
    UNIT III – Data Processing with Apache Spark 

 

Spark Architecture (RDD, DAG, Executors) 

 

Introduction 

Apache Spark is an open-source, distributed, cluster-computing framework designed for fast and 

scalable processing of large volumes of data. It supports batch processing, real-time stream 

processing, machine learning, graph analytics, and SQL-based data analysis. Spark overcomes 

the limitations of Hadoop MapReduce by enabling in-memory computation, thereby achieving 

significant performance improvements. 

The Spark architecture is built around three fundamental pillars: 

Resilient Distributed Dataset (RDD) – data abstraction 

Directed Acyclic Graph (DAG) – execution model 

Executors – task execution engine 

Together, these components provide fault tolerance, scalability, and high-speed processing. 

 

High-Level Overview of Spark Architecture 

The main components of Apache Spark architecture are: 

1. Driver Program 

2. SparkContext / SparkSession 

3. Cluster Manager 

4. Worker Nodes 

5. Executors 

6. RDD 

7.DAG Scheduler and Task Scheduler 

Spark applications run in a master–slave architecture, where the driver acts as the master and 

worker nodes act as slaves executing tasks. 

 



Driver Program 

The Driver Program is the central control unit of a Spark application. 

Responsibilities of the Driver: 

Executes the main() method of the application 

Creates SparkContext (or SparkSession) 

Converts user code into a logical execution plan 

Builds RDD lineage and DAG 

Schedules jobs, stages, and tasks 

Collects results from executors 

Internal Components of the Driver: 

DAG Scheduler – splits jobs into stage 

Task Scheduler – sends tasks to executor 

Block Manager – manages cached data and shuffle blocks 

The driver remains active throughout the lifetime of the Spark application. 

 

Cluster Manager 

The Cluster Manager is responsible for managing cluster resources. 

Types of Cluster Managers: 

Spark Standalone 

Hadoop YARN 

Apache Mesos 

Kubernetes 

 

Functions: 

Allocates CPU cores and memory 

Launches executor processes on worker nodes 

Monitors resource usage 



Handles dynamic allocation of executors 

 

Worker Nodes 

Worker nodes are the machines that perform the actual computation. 

Role of Worker Nodes: 

Host executor processes 

Execute tasks sent by the driver 

Store RDD partitions in memory or disk 

Return computed results to the driver 

Each worker node can run multiple executors depending on available resources. 

 

Executors 

Executors are distributed processes running on worker nodes. 

Responsibilities of Executors: 

Execute tasks assigned by the driver 

Cache RDD partitions for reuse 

Perform parallel computation 

Report task status back to the driver 

 



Characteristics: 

Executors live for the entire duration of the application 

Each executor has a fixed number of cores and memory 

Executors increase parallelism and performance 

Multiple tasks run concurrently within an executor 

Executors are crucial for Spark’s in-memory and high-speed processing. 

 

Resilient Distributed Dataset (RDD) 

Definition: 

An RDD is an immutable, distributed collection of objects partitioned across nodes in a Spark 

cluster. 

Key Characteristics: 

Resilient – Recovers automatically from failures 

Distributed – Data is split into partitions 

Immutable – Cannot be modified after creation 

Lazy Evaluation – Computation starts only when an action is triggered 

Fault-Tolerant – Uses lineage information 

RDD Operations: 

1. Transformations 

Create new RDDs 

Lazy operations 

Examples: map(), filter(), flatMap() 

2. Actions 

Trigger execution 

Return results to the driver 

Examples: count(), collect(), saveAsTextFile() 

 



RDD Lineage: 

RDD maintains a lineage graph that tracks how each RDD is derived. In case of failure, lost 

partitions are recomputed instead of being replicated. 

 

Directed Acyclic Graph (DAG) 

Definition: 

A Directed Acyclic Graph is a logical execution plan that represents a sequence of 

transformations applied to RDDs. 

DAG in Spark: 

Built by the driver using RDD lineage 

Nodes represent RDDs 

Edges represent transformations 

No cycles exist 

DAG Scheduler: 

Converts jobs into DAGs 

Splits DAGs into stages 

Identifies shuffle boundaries 

Optimizes task execution 

Benefits of DAG: 

Reduces unnecessary data shuffling 

Optimizes execution plan 

Improves performance over MapReduce 

Enables pipelined execution 

 

Spark Job Execution Flow 

1. User submits a Spark application 

2. Driver creates SparkContext 

3. RDD transformations build a DAG 



4. DAG Scheduler divides jobs into stages 

5. Task Scheduler assigns tasks to executors 

6. Executors execute tasks in parallel 

7. Results are returned to the driver 

 

Modes of Spark Execution 

1. Cluster Mode 

Driver runs inside the cluster 

Recommended for production 

2. Client Mode 

Driver runs on the client machine 

Suitable for debugging 

3. Local Mode 

Runs on a single machine 

Used for testing and learning 

 

Advantages of Spark Architecture 

High-speed processing due to in-memory computation 

Fault tolerance using RDD lineage 

Scalable and distributed execution 

Efficient DAG-based scheduling 

Supports multiple languages (Scala, Java, Python, R) 

Suitable for batch and real-time processing 

 

Applications of Spark 

Big data analytics 

Real-time stream processing 



Machine learning (MLlib) 

Graph processing (GraphX) 

Interactive SQL queries (Spark SQL 

 

Conclusion 

Apache Spark architecture integrates RDD for data abstraction, DAG for optimized execution 

planning, and Executors for parallel task execution. These components work together under the 

control of the driver and cluster manager to deliver high-performance, fault-tolerant, and scalable 

big data processing. Due to these features, Spark has become one of the most widely used 

frameworks in modern data analytics. 

 

 

 

 



Spark SQL and Data Frames 

Introduction 

Apache Spark is a fast and scalable distributed data processing framework. Spark SQL and 

DataFrames are high-level abstractions provided by Spark to process structured and semi-

structured data efficiently. Spark SQL enables SQL-based querying, while DataFrames provide a 

table-like structure with powerful programmatic operations. Both improve performance, 

scalability, and ease of development compared to low-level RDDs. 

 

Spark SQL 

Definition 

Spark SQL is a Spark module that allows users to process structured data using SQL queries, 

DataFrames, and Datasets. It introduces schema awareness and automatic query optimization. 

 

Characteristics of Spark SQL 

SQL-Based Declarative Interface – Allows users to write ANSI SQL queries easily. 

Schema Awareness – Understands data structure, enabling validation and optimization. 

Catalyst Optimizer – Optimizes queries using logical and physical optimization techniques. 

Tungsten Execution Engine – Improves memory and CPU efficiency. 

Hive Compatibility – Supports HiveQL, Hive Metastore, and UDFs. 

 

Operations in Spark SQL 

DDL Operations – CREATE, DROP, ALTER 

DML Operations – SELECT, INSERT 

Aggregation Operations – GROUP BY, COUNT, SUM, AVG 

Join Operations – INNER, LEFT, RIGHT, FULL JOIN 

 

Applications of Spark SQL 

Interactive data analysis 



Data warehousing 

Business intelligence reporting 

Querying structured big data 

Integration with BI tools 

 

Advantages of Spark SQL 

Ease of Use 

SQL syntax allows users with database knowledge to work with big data easily. 

High Performance 

Uses Catalyst optimizer and Tungsten engine to improve query execution speed. 

Automatic Optimization 

Queries are optimized automatically without manual tuning. 

Multiple Data Source Support 

Can query data from Hive, JSON, CSV, Parquet, ORC, and relational databases. 

Scalability 

Efficiently processes large datasets across distributed clusters. 

 

DataFrames 

Definition 

A DataFrame is a distributed, immutable collection of data organized into named columns, 

similar to a table in a relational database. It is built on Spark SQL and automatically optimized. 

 

Characteristics of DataFrames 

Structured Schema – Data organized into columns with defined data types. 

Distributed Nature – Data is partitioned across cluster nodes. 

Immutability – Transformations create new DataFrames. 

Lazy Evaluation – Execution occurs only when an action is triggered. 



Fault Tolerance – Lineage information enables recovery from failures. 

Language Independent – Supported in Python, Scala, Java, and R. 

 

Operations in DataFrames 

Transformation Operations 

select(), filter(), withColumn(), drop(), join() 

Aggregation Operations 

groupBy(), count(), sum(), avg(), min(), max() 

Action Operations 

show(), collect(), count(), take(), write() 

SQL Operations 

Querying DataFrames using Spark SQL after creating temporary views 

 

Applications of DataFrames 

Big data analytics 

ETL pipelines 

Machine learning preprocessing 

Log and event analysis 

Batch and streaming processing 

 

Advantages of DataFrames 

Better Performance than RDDs 

Optimized execution and efficient memory management. 

Less Code and Simplicity 

High-level APIs reduce complexity and development time. 

Automatic Query Optimization 

Catalyst optimizer improves execution without user effort. 



Efficient Memory Usage 

Uses optimized in-memory representation. 

Interoperability 

Works seamlessly across multiple languages and data sources. 

 

Diagram 

 

Diagram Explanation  

The diagram shows how SQL queries or DataFrame operations are converted into a logical plan, 

optimized using the Catalyst Optimizer, converted into a physical plan, and executed efficiently 

using the Tungsten Execution Engine over distributed data sources. 

User Interface Layer 

The user submits queries using SQL queries or DataFrame APIs. 

Spark SQL Engine 

Spark SQL converts the query into a logical plan. 

Catalyst Optimizer 

The logical plan is optimized using rule-based and cost-based optimizations such as predicate 

pushdown and column pruning. 

Physical Plan Generator 



Optimized logical plan is converted into a physical execution plan. 

Tungsten Execution Engine 

Executes the plan efficiently using optimized memory management and CPU execution. 

Data Sources 

Data is read from various sources like HDFS, Hive, CSV, JSON, Parquet, ORC, JDBC 

databases. 

Result Output 

Final results are returned to the user or stored back in external storage. 

 

Example for Spark SQL 

Scenario 

Assume we have an Employee table with the fields: emp_id, name, department, salary 

SQL 

SELECT department, AVG(salary) AS avg_salary 

FROM employee 

GROUP BY department; 

Explanation 

The query groups employees based on department. 

It calculates the average salary for each department. 

Spark SQL converts this query into a logical plan, optimizes it using the Catalyst Optimizer, and 

executes it efficiently using the Tungsten Execution Engine. 

 

Example for DataFrames (Pyspark)  

Scenario 

Reading employee data from a CSV file and performing aggregation. 

Python 

df = spark.read.csv("employee.csv", header=True, inferSchema=True) 

df.groupBy("department") \ 



  .avg("salary") \ 

  .show() 

Explanation 

The DataFrame reads structured data from a CSV file. 

groupBy() groups records by department. 

avg() computes the average salary. 

Execution happens lazily and is optimized automatically. 

 

Same Operation: Spark SQL vs DataFrame (Comparison Example) 

Spark SQL 

Sql 

SELECT department, COUNT(*)  

FROM employee 

GROUP BY department; 

DataFrame 

Python 

df.groupBy("department").count().show() 

Both Spark SQL and DataFrames perform the same operation, but Spark SQL uses a SQL 

interface, whereas DataFrames use a programmatic API. 

 

Comparison: Spark SQL vs DataFrames 

Feature Spark SQL DataFrames 

Interface SQL-based API-based 

User Type SQL users / Analysts Developers 

Query Style Declarative Functional 

Flexibility Limited to SQL More flexible 

Optimization Automatic Automatic 

Performance High High 

Language Support SQL Python, Scala, Java, R 

 



Spark for ETL: joins, filters, aggregations 

Introduction 

ETL (Extract, Transform, Load) is a fundamental process in big data and data warehousing 

systems. It involves extracting data from multiple heterogeneous sources, transforming it into a 

clean and structured format, and loading it into a target system such as a data warehouse or data 

lake. Apache Spark is widely used for ETL because of its in-memory processing, distributed 

architecture, and high-level APIs such as Spark SQL and DataFrames, which simplify complex 

data transformations at scale. 

 

Role of Spark in ETL 

Spark is mainly used in the Transform phase of ETL, where large volumes of raw data are 

cleaned, integrated, and summarized. Spark supports ETL operations through: 

DataFrames and Spark SQL 

Optimized execution using Catalyst Optimizer 

Efficient memory management using Tungsten 

The most common transformation operations in Spark-based ETL are filters, joins, and 

aggregations. 

 

1. Filters in Spark ETL 

Meaning 

Filtering is the process of selecting required records and eliminating unnecessary or invalid data 

during ETL. Filters help in improving data quality and reducing data size. 

 

Why Filters are Important in ETL 

Remove duplicate or invalid records 

Apply business rules 

Reduce processing and storage cost 

Improve performance of downstream operations 

 

 



Common Filtering Scenarios 

Removing null values 

Selecting recent transactions 

Applying threshold conditions (age, salary, amount, etc.) 

DataFrame Example 

 

DataFrame Example 

filtered_df = df.filter(df.salary > 30000)  

Spark SQL Example 

SELECT * 

FROM employee 

WHERE salary > 30000; 

 

Explanation 

Only employee records with salary greater than 30,000 are retained. Spark applies predicate 

pushdown during optimization, ensuring faster execution. 

 

2. Joins in Spark ETL 

Meaning 

Joins are used to combine data from multiple sources based on a common key. In ETL pipelines, 

data often comes from different systems such as customer databases, transaction logs, and 

product catalogs. 

 

Why Joins are Important in ETL 

Data integration and enrichment 

Creation of fact and dimension tables 

Building a unified view of data 

 



Types of Joins in Spark 

Inner Join 

Left Outer Join 

Right Outer Join 

Full Outer Join 

 

DataFrame Example 

joined_df = orders.join(customers, "customer_id", "inner") 

Spark SQL Example 

SELECT o.order_id, c.customer_name 

FROM orders o 

INNER JOIN customers c 

ON o.customer_id = c.customer_id; 

 

Explanation 

Order data is enriched with customer information using a common customer_id. Spark optimizes 

joins using techniques like broadcast joins and join reordering. 

 

3. Aggregations in Spark ETL 

Meaning 

Aggregation is the process of summarizing detailed data into meaningful metrics. Aggregations 

are used to generate reports, KPIs, and analytical summaries. 

 

Why Aggregations are Important in ETL 

Reduce large datasets into summarized form 

Generate business insights 

Prepare data for dashboards and analytics 

 



Common Aggregation Functions 

COUNT 

SUM 

AVG 

MIN 

MAX 

 

DataFrame Example 

agg_df = sales.groupBy("region").sum("revenue") 

Spark SQL Example 

SELECT region, SUM(revenue) AS total_revenue 

FROM sales 

GROUP BY region; 

 

Explanation 

Sales data is grouped by region and total revenue is calculated for each region. Spark performs 

this efficiently using distributed aggregation. 

 

Complete ETL Workflow Using Spark 

1. Extract 

Read data from CSV, JSON, Hive, relational databases, or cloud storage. 

Python 

df = spark.read.csv("sales.csv", header=True, inferSchema=True) 

2. Transform 

Apply filters to clean data 

Use joins to integrate multiple datasets 

Perform aggregations to summarize data 



Python 

clean_df = df.filter(df.revenue > 0) 

final_df = clean_df.groupBy("product_id").sum("revenue") 

3. Load 

Write processed data to HDFS, Hive tables, or data warehouse. 

Python 

final_df.write.mode("overwrite").parquet("output/") 

 

Advantages of Using Spark for ETL 

High Performance 

In-memory processing significantly reduces execution time compared to disk-based systems. 

Scalability 

Spark can process terabytes or petabytes of data across distributed clusters. 

Ease of Development 

High-level APIs reduce code complexity and development time. 

Automatic Optimization 

Catalyst optimizer improves query performance without manual tuning. 

Fault Tolerance 

Lineage-based recovery ensures reliability in case of failures. 

Support for Multiple Data Sources 

Easily integrates with structured and semi-structured data. 

 

Real-World ETL Use Cases 

Sales data aggregation for dashboards 

Customer behavior analysis 

Log and clickstream processing 

Financial reporting systems 



Data lake and data warehouse pipelines 

 

Conclusion 

Apache Spark is a powerful and efficient platform for ETL workloads. Its support for filters, 

joins, and aggregations enables scalable data cleaning, integration, and summarization. By using 

Spark SQL and DataFrames, Spark-based ETL pipelines achieve high performance, reliability, 

and flexibility, making Spark a preferred choice for modern big data processing systems. 

 

Use cases in AI/DS pipelines 

Apache Spark is widely used in AI (Artificial Intelligence) and DS (Data Science) pipelines 

because it efficiently handles large-scale structured and semi-structured data, which is the 

foundation for machine learning and analytics. 

 

1. Data Preprocessing for Machine Learning 

Filters: Remove null, inconsistent, or outlier records to ensure clean input for ML models. 

Example: Filter out customers with missing age or invalid purchase history. 

Joins: Combine datasets from multiple sources (e.g., customer info + transaction logs) to create a 

feature-rich dataset. 

Aggregations: Generate aggregated features like total purchases, average revenue, or user 

activity count for each user. 

Impact: Clean, enriched, and structured data improves model accuracy and reduces training 

errors. 

 

2. Feature Engineering 

Aggregations: Summarize raw data into features such as average session time, total clicks, or 

monthly spending. 

Filters: Remove irrelevant events or low-variance features. 

Joins: Integrate external datasets (e.g., demographic, social media, weather) to enhance 

predictive power. 

Impact: Produces a high-quality feature matrix suitable for training ML algorithms like 

regression, classification, or clustering. 



3. Real-Time Analytics and AI Pipelines 

Spark Structured Streaming + ETL operations enables real-time data pipelines. 

Filters can discard irrelevant or corrupted events instantly. 

Joins combine streaming data with reference datasets (e.g., user profiles). 

Aggregations generate metrics like rolling averages, counts, or anomaly scores in real-time. 

Impact: Supports AI models for recommendation systems, fraud detection, predictive 

maintenance, and dynamic pricing. 

 

4. Model Monitoring and Post-Processing 

After deploying models, Spark ETL pipelines can filter and aggregate incoming data to monitor 

model performance. 

Joins allow integration of predicted outputs with ground truth to compute accuracy metrics. 

Aggregations summarize metrics across regions, time periods, or product categories. 

Impact: Ensures robust AI pipelines with continuous evaluation and improvement. 

 

5 .Use Cases in Data Science Workflows 

AI/DS Stage Spark ETL Role Example 

Data Cleaning Filters Remove invalid customer 

transactions 

Feature Engineering Joins + Aggregations Compute total spending per 

user across multiple datasets 

Model Training Aggregations Aggregate past interactions 

for supervised learning 

Real-Time Analytics Filters + Joins + 

Aggregations 

Fraud detection, 

recommendation engine 

Model Evaluation Joins + Aggregations Compare predictions with 

actual outcomes to compute 

metrics 

 

 

 

 



Introduction to PySpark 

1. What is PySpark? 

PySpark is the Python API for Apache Spark, a distributed, in-memory big data processing 

framework. It allows Python developers to leverage Spark’s scalable and high-performance 

capabilities for processing large datasets. PySpark supports structured data processing, machine 

learning, streaming analytics, and graph processing through a unified framework. 

 

2. Key Features of PySpark 

Distributed Computing – Processes data across multiple nodes in a cluster, enabling scalability 

for large datasets. 

In-Memory Processing – Data is processed in RAM, making operations much faster compared 

to disk-based frameworks. 

High-Level APIs – Provides Python-friendly APIs for RDDs, DataFrames, and Spark SQL. 

Fault Tolerance – Automatically recovers lost data using lineage information in RDDs and 

DataFrames. 

Integration with Python Ecosystem – Works with NumPy, Pandas, Scikit-learn, and other 

Python libraries for machine learning and analytics. 

Supports Multiple Workloads – Batch processing, real-time streaming, machine learning 

(MLlib), and graph processing (GraphX). 

 

3. Components of PySpark 

Spark Core – The foundation of Spark for distributed task scheduling, memory management, 

and fault tolerance. 

Spark SQL – Enables structured data processing using DataFrames and SQL queries. 

Spark Streaming – Processes real-time streaming data. 

MLlib – Machine learning library for scalable algorithms. 

GraphFrames/GraphX – Libraries for graph analytics and network processing. 

 

4. PySpark Architecture 

Driver Program – Runs the main Python script and coordinates tasks. 



Cluster Manager – Allocates resources across worker nodes (e.g., YARN, Mesos, or Spark 

Standalone). 

Worker Nodes – Execute tasks on partitions of data in parallel. 

RDD/DataFrame Operations – Transformations and actions are applied, optimized using 

Catalyst and executed efficiently with Tungsten. 

 

5. Advantages of PySpark 

Ease of Use – Python syntax simplifies distributed data processing. 

Scalability – Handles terabytes or petabytes of data efficiently. 

Performance – Optimized execution with Catalyst and Tungsten. 

Versatility – Supports ETL, machine learning, streaming, and graph analytics. 

Integration – Works seamlessly with Hadoop, Hive, and cloud storage systems. 

 

6. Simple PySpark Example 

Python 

from pyspark.sql import SparkSession 

# Create SparkSession 

spark = SparkSession.builder.appName("PySparkExample").getOrCreate() 

# Load CSV into DataFrame 

df = spark.read.csv("data.csv", header=True, inferSchema=True) 

# Show first 5 rows 

df.show() 

# Perform aggregation 

df.groupBy("department").avg("salary").show() 

 

Explanation: 

The script creates a Spark session, reads data into a DataFrame, displays the first rows, and 

performs an aggregation grouped by department. 



This demonstrates PySpark’s ease of use, DataFrame operations, and distributed processing 

capabilities. 

 

7. Applications of PySpark 

Large-scale data analytics and ETL pipelines 

Machine learning pipelines using MLlib 

Real-time data processing with Spark Streaming 

Graph analysis using GraphFrames 

Integration with cloud data lakes and BI tools 

 

Conclusion 

PySpark combines the simplicity of Python with the power of Apache Spark’s distributed 

computing. Its high-level APIs, fault tolerance, and optimized execution engine make it ideal for 

processing large-scale data, building AI/ML pipelines, and handling real-time analytics in 

modern big data ecosystems. 

 


