
24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1

SOFTWARE DESIGN

 Software design is an iterative process through which requirements are translated into a “blue print” for

constructing the software.

 There are 3 distinct types of activities in software design:

i) External Design:

 Involves conceiving, planning and specifying the externally observable characteristics of a software

product.

 The characteristics include:

i) User displays and report formats

ii) External data sources and data sinks

iii) Functional characteristics

iv) Performance requirements

v) High level process structure of the product.

ii) Internal Design:

 Involves conceiving planning and planning out specifying the internal structure and the processing

details of the software product.

 The details include

i) Specify internal structure and processing data

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2

ii) To record design decisions

iii) To elaborate test plan

iv) provides a blue print for implementation, testing and maintenance activities.

iii) Detailed Design:

i) Specification of algorithm that implements the function

ii) Concrete data structures that implement the data stores

ii) Actual interconnections among function and data structures.

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

3

SOFTWARE DESIGN PROCESS

 Software design is an iterative process through which requirements are translated into a “blue-print” for

constructing software.

 The design is represented at a high-level of abstraction.

 High-level of abstraction is a level that can be directly traced to the specific system objective and more

detail data functional and behavioral requirements.

Design and Software quality:

Three characteristics that serve as a guide the evaluation of a good design are:

1. The design must implement all the explicit requirements contained in the analysis model and it

must accommodate all of the implicit requirements desired by the customer.

2. The design must be a readable understandable guide for those who generate code and those who

test and subsequently support the software.

3. The design should provide a complete picture of the software, addressing the data, functional and

behavioral domains from an implementation perspective.

Characteristics of Good Design:

i) A design should exhibit an architecture that has been created using recognizable design patterns. That

composed of components that exhibit good design characteristics. This can be implemented in an

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4

evolutionary fashion, there by facilitating implementation and testing.

ii) A design should be modular (i.e.,) the software should be logically partitioned into elements that

perform specific functions and sub functions.

iii) A design should contain distinct representations of data architecture interfaces and components.

iv) A design should lead to data structures

v) A design should lead to components that exhibit independence functional characteristics.

vi) A design should lead to interfaces that reduce the complexity of connections between modules and

with the external environment.

vii) A design should be derived using a repeatable method that is driven by information obtained during

software requirements analysis.

viii) A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes:

The software quality attribute are

 Functionality

 Reliability

 Performance

 Supportability [FURPS].

The FURPS quality attributes represent a target for all software design:

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5

1. Functionality:

It is accessed by evaluating the feature set and capabilities of the program, the generality of

the functions that are delivered the security of the overall system.

2. Usability:

It is accessed by considering human factors, aesthetics, consistency and documentation.

3. Reliability:

It is evaluated by measuring the frequency and severity of failure, the accuracy of output

result, the mean-time-to-failure [MTTF], the ability to recover from failure and the

predictability of the program.

4. Performance:

It is measured by processing speed, response time, resource consumption, throughput and

efficiency.

5. Supportability:

It combines the ability to extend the program extensibility, adaptability, serviceability.

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

6

Design Concepts

Software design concepts provide the necessary framework for “getting it right”.

1. Abstraction:

 Abstraction is the intellectual tool that allows us to deal with concepts apart from particular instances

of those concepts.

 At the highest level of the abstraction a solution is stated in broad terms using the language of the

problem environment.

 At the lowest level of the abstraction a more detailed description of the solution is provided.

Different types of abstraction are

2. Procedural abstraction or Functional abstraction

 refers to a sequence of instructions that have a specific and limited function.

 E.g:”the word ‘open’ for a door”

 Open includes a long sequence of procedural steps. (e.g.: walk to the door, reach out and grasp

knob. Turn knob & pull door etc).

3. Data abstraction:

 collection of data that describes a data object.

 eg: we can define a data abstraction called door. (eg: door type, swing direction, opening

mechanism, weight dimensions etc).

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

7

4. Architecture.

The architectural design can be given using one or more of a no of different models

i) Structural models

Represent architecture as a organized collection of program component.

ii) Framework models

Increase the level of design abstraction by attempting to identify the repeatable architectural

design framework, which is encountered in similar types of applications.

iii) Dynamic models

Address the behavioral aspects of the program architecture, indicating how the system or

structure configuration may change as a function of external events.

iv) Process models

Focus on the design of the business or technical process that the system must accommodate.

v) Functional models

Can be used to represent the functional hierarchy of the system.

5. Patterns:

A pattern is defined as in which conveys the essence of a proven solution to a recurring problem within

a certain context in competing concerns”.

The goal of the each design pattern is to provide a description that enables a designer to determine.

 Whether the pattern is applicable to the current work.

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

8

 Whether the pattern can be reused.

 Whether the pattern can serve as a guide for developing a similar but functionality or structurally

different pattern.

6. Modularity:

 Software is divided into separately named and addressable components called modules.

 These are integrated to satisfy problem requirements.

 Modularity is a single attribute of software that allows a program to be intellectually manageable.

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

9

PROPERTIES

i) Each processing abstraction is a well-defined subsystem that is potentially useful in other

applications.

ii) Each function in each abstraction has a single well defined purpose

iii) Each function manipulates no more than one major data structure.

iv) Functions share global data selectively. It is easy to identify all routines that share a major data

structure.

v) Functions that manipulate instances or abstract data types are encapsulated with the data

structure being manipulated.

7. Information hiding:

 Each module in the system hides the internal details of its processing activities.

8. Functional independence

 It is a direct outgrowth of modularity and the concepts of abstraction & information hiding.

 It is achieved by developing modules with “single-minded”, and an “aversion” to excessive interaction

with other modules.

Independence is assessed using two methods

a. Cohesion:

 It is an indication of the relative functional strength of a module.

 It is a natural extension of information hiding.

 A cohesive module performs a single task, requiring little interaction with other components .

24CA204-SOFTWARE ENGINEERING METHODOLOGIES ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

10

b. Coupling:

 Coupling is an indication of interconnection among modules in a software structure.

 Coupling depends on the interface complexity between modules.

 The degree of coupling is lowest for data communication, higher for control communication

and highest for the modules that modify other modules.

9. Refinement:

 It is a process of elaboration.

 Step-wise refinement is a top-down design strategy.

 A program is developed is by successively refining levels of procedural detail.

 Abstraction enables a designer to reveal low-level details as design progresses.

10. Refactoring:

 It is a reorganization techniques that simplifies the design (or code) of a component without

changing its behavior.

 Defined as Refactoring is the process of changing a software system in such a way that it does not

alter the external behavior of the code yet improves its internal structure.

	i) External Design:
	ii) Internal Design:
	iii) Detailed Design:
	Design and Software quality:
	Characteristics of Good Design:
	Quality Attributes:
	1. Functionality:
	2. Usability:
	3. Reliability:
	4. Performance:
	5. Supportability:
	Design Concepts
	1. Abstraction:
	2. Procedural abstraction or Functional abstraction
	3. Data abstraction:
	4. Architecture.
	i) Structural models
	ii) Framework models
	iii) Dynamic models
	iv) Process models
	v) Functional models
	5. Patterns:
	6. Modularity:
	7. Information hiding:
	8. Functional independence
	a. Cohesion:
	b. Coupling:
	9. Refinement:
	10. Refactoring:

