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DC Response of RLC Series Circuit :
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Fig. 4.10 RLC series circuit

The RLC series circuit is shown above which is excited by a DC source. Assume that at
t =0, the switch S is closed. While closing the switch, the voltage drop across the capacitor and
current flowing through the inductor is zero.

Applying KVL to the circuit,
V=V (t)+V,(t)+ V(1)
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By applying laplace transform to equation (13), we get
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The roots of the denominator for equation (14)
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Equation (15) can be represented by

Slasl =aiB

where, a:i and B = 8 s
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Here, S, = o+, S,=a—-P
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Equation (14) can be written as
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There are three possibilities.
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The two roots are real and distinct. The denominator has the roots (o + ) and

(a—PB) and we may write
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Taking inverse laplace transform,
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The value of k, and k, can be find by using partial fraction method. The current is said to
be overdamped as in below fig. 4.11.
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Fig. 3.11 Overdamped response
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The root are equal and the oscillation in the circuit are just eliminated. The solution is the
critically damped case.
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Taking inverse laplace transform,

1(S)=
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The current response of i(t) for critically damped case 1s shown below.
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Fig. 3.12 Critically damped response



Case3:
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The roots are complex conjugate and the circuit is under damped as shown below.
I(S)= K, —+ ky :
s—(a+jp) s—(a—jp)

Taking inverse laplace transform,

i(t) =%, 858k g
=e” [k, e® 4k, e"'“]
Where, k, and k, are complex and are also conjugate of one another.
k,= kl‘
-, i can be rewritten as, i=e"[Acospt+ Bsinft]

This solution shows that the current is oscillatory and at the same time decays in a short
time as o =—R/2L is always negative.
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Fig. 3.13 Oscillatory response
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Note : When the terms (i) and 1c e equal the oscillations are just eliminated and this

condition is called “critical damping”.






