1.4 TOOLS: STRACE, MAN, GCC, GDB
1. STRACE
STRACE is a debugging and diagnostic tool that monitors the system calls

made by a program and the signals it receives. It helps understand how a program
interacts with the operating system — useful for debugging, performance
analysis, and troubleshooting
Key Points:
¢ Monitors the communication between a program and the kernel.
e Shows every system call (like open, read, write, fork, etc.) the program
makes.
e Helps diagnose file access errors, permission issues, etc.
How It Works
Every program calls services from OS kernel (like open, read, write, fork).
strace traces these calls line by line.
Example
strace Is - Shows all system calls made by Is.
Common usages
strace ./a.out # trace program
strace -p 1234 # Traces the system calls of the process currently
running with PID = 1234.
strace -0 output.txt Is # save trace output to a file
2. MAN (MANUAL PAGES)
MAN is the online manual for Linux commands, libraries, system calls,
configuration files, etc.
Purpose
e Get detailed help for commands
e Learn syntax, options, examples
e Read documentation for system calls and C library functions
Usage
man Is # manual for Is command

24CS404 OS



man 2 open  # section 2: system call open()
man 3 printf # section 3: library function printf()
Manual Sections (Important)
Section Description
1 User commands
2 System calls
3 C library functions
4 Device/driver files
5 Configuration files
8 System administration commands
Useful options
man -k keyword # search manual
man -f command # brief description
3. GCC (GNU COMPILER COLLECTION)
e GCC is the default compiler for C, C++, and other languages in Linux.
e A compiler that converts source code (like C/C++) into executable machine
code.
Purpose
e Compile C/C++ programs
e Optimize code
e Link object files
e Produce executables
Basic Compilation Flow
source.c — preprocessing — compilation — assembly — object file — linking
— executable
Basic Usage
gcc hello.c -o hello
Compiles hello.c into an executable named hello.
Common Options

1. gcc -Wall file.c -0 a.out # show all warnings

24CS404 OS



e Wall means “warn all” — it enables most common compiler warnings.
e Helps you detect potential errors, unused variables, or suspicious code
early.
e Recommended for every compilation during development.
2. gcc -g file.c-oa.out  # include debug info for gdb
e The -g option adds symbolic debugging info into the executable.
e This allows GDB (GNU Debugger) to show variable names, line numbers,
and function details.
e Essential when you plan to debug your program.
3.gcc -02 file.c -0 a.out  # optimization
e Optimize the code for better performance.
e The -O flag controls the optimization level.
e -0O2 applies a good balance of optimization without slowing compilation
much.
Higher levels:
-O0 — no optimization (default)
-01, -02, -O3 — increasing levels of optimization
4. gcc -c file.c # compile only, produce .0
e Compile only; do not link.
e Generates an object file (file.o) from the source code.
e Used when building multi-file projects — you compile each .c file
separately, then link them together
e This approach speeds up large builds and simplifies debugging.
4. GDB (GNU DEBUGGER)
e gdb is used to debug programs at runtime.
e A debugging tool used to analyze and control the execution of programs
— step through code, set breakpoints, view variables, and track down bugs.
Purpose
e Track and fix run-time errors
e View program state (variables, memory, stack)

24CS404 OS



e Set breakpoints
e Step through code line by line
e Debug segmentation faults

Common Commands

Command Meaning
run run the program
break main set breakpoint at main
break file.c:25 break at line 25
next step over code
step step into a function
print x print variable x
backtrace show stack trace
continue continue execution
quit exit gdb

Example

gdb ./program
you’re starting the GNU Debugger (GDB) and loading the executable program
into it for debugging.
How It Works — Step by Step
1. Load the Program
e GDB loads your compiled program (./program) into memory but does not
start running it yet.
e |f the program was compiled with gcc -g, GDB also loads debugging
symbols — like variable names, line numbers, and function info.
e This makes it possible to debug at source code level instead of raw machine
code.
2. Set Breakpoints (Optional)
e You can tell GDB where to pause execution.

e A breakpoint stops the program before a specific line or function executes.

24CS404 OS



Example:
(gdb) break main
— Sets a breakpoint at the start of main().
3. Run the Program
Start execution under GDB’s control:
(gdb) run
e GDB runs the program just like normal.
e When it hits a breakpoint or an error (like segmentation fault), it pauses
and gives you control.
4. Inspect and Control Execution
While the program is paused, you can:
e View variable values:
(gdb) print x
e Step through code line by line:
(gdb) next  # step to next line (skip function calls)
(gdb) step  # step into function
e Continue until next breakpoint:
(gdb) continue
e List the current code:
(gdb) list
5. Find the Cause of Errors
If your program crashes, GDB stops and shows where it happened:
Program received signal SIGSEGV, Segmentation fault.
Then you can inspect:
(gdb) backtrace
— Shows the chain of function calls that led to the crash.
6. Exit GDB
When finished:

(gdb) quit

24CS404 OS



