ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I - INTRODUCTION TO SOFTWARE ENGINEERING [9 hours]

Definition of Software Engineering, Software Development Life Cycle (SDLC) -
Phases, Traditional vs Agile Models (Waterfall, Agile, DevOps),Scrum Basics — Roles, Sprint,
Backlog,Version Control using Git and GitHub,Introduction to Project Tools (GitHub Projects,
Jira, Trello)

SOFTWARE:

Software takes on a dual role. It is a product and a vehicle for delivering a product. As a
product, software makes use of the computing power that exists in the computer’s hardware or
in other computers connected to it. As the vehicle used to deliver the product, software acts as
the basis for the control of the computer (operating systems), the communication of information
(networks), and the creation and control of other programs (software tools and environments).

Software is an information transformer—producing, managing, acquiring, modifying,
displaying, or transmitting information as a single bit or as complex as a multimedia

presentation derived from data acquired from dozens of independent sources.

Defining Software
Software is:

(1) instructions (computer programs) that when executed provide desired features,
function, and performance

(2) data structures that enable the programs to adequately manipulate information

(3) descriptive information in both hard copy and virtual forms that describes the
operation and use of the programs.
Characteristics of software
1. Software is developed or engineered; it is not manufactured. Although some similarities
exist between software development and hardware manufacturing, the two activities are
fundamentally different.

e In both activities, high quality is achieved through good design, but the manufacturing

phase for hardware has quality problems that are nonexistent for software.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Both activities are dependent on people, but the relationship between people applied and
work accomplished is entirely difterent.

e Both activities require the construction of a “product,” but the approaches are different.
2. Software doesn’t wear out.. The relationship between the failure rate and the time of
hardware can be shown as a bathtub curve, indicating that hardware exhibits relatively high
failure rates early in its life due to design or manufacturing defects and defects are corrected
and the failure rate drops to a steady-state level for some period of time. As time passes, the
failure rate rises again as hardware components suffer from the cumulative effects of dust,
vibration, abuse, temperature extremes, and many other environmental maladies. Stated simply,

the hardware begins to wear out.

“Infant
mortality”

Failure rate

Time

Software is not susceptible to environmental maladies. Hence, the failure rate curve for
software should take the form of the “idealized curve” shown in the below figure.
Undiscovered defects will cause high failure rates early in the life of a program. However, these
are corrected and the curve flattens as shown. The idealized curve is a gross oversimplification
of actual failure models for software. However, the implication is clear—software doesn’t wear
out.

Increased failure
rate due to side
effects

Failure rate

Change

Actual curve

Ideqlized curve

Time

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Software will undergo change. As changes are made, it is likely that errors will be introduced,
causing the failure rate curve to spike as shown in the “actual curve”. Before the curve can
return to the original steady-state failure rate, another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise—the software is deteriorating
due to change.
3. A software component should be designed and implemented so that it can be reused in
many different programs. Modern reusable components encapsulate both data and the
processing that is applied to the data, enabling the software engineer to create new applications
from reusable parts
Software Application Domains

Today, seven broad categories of computer software present continuing challenges
for software engineers:
System software—a collection of programs written to service other programs. The systems
software area is characterized by heavy interaction with computer hardware; heavy usage by
multiple users; concurrent operation that requires scheduling, resource sharing, and
sophisticated process management; complex data structures; and multiple external interfaces.

e Some system software (e.g., compilers, editors, and file management utilities) processes
complex, determinate, information structures.
e Other systems applications (e.g., operating system components, drivers, networking

software, telecommunications processors) process largely indeterminate data.
Application software—stand-alone programs that solve a specific business need. Applications
in this area process business or technical data in a way that facilitates business operations or
management/technical decision making. Application software is used to control business
functions in real time (e.g., point-of-sale transaction processing, real-time manufacturing
process control).
Engineering/scientific software—has been characterized by “number crunching” algorithms.
Applications range from astronomy to volcanology, from automotive stress analysis to space

shuttle orbital dynamics, and from molecular biology to automated manufacturing.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Embedded software—resides within a product or system and is used to implement and control
features and functions for the end user and for the system itself. Embedded software can
perform limited and esoteric functions (e.g., key pad control for a microwave oven) or provide
significant function and control capability (e.g., digital functions in an automobile such as fuel
control, dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use by many different
customers. Product-line software can focus on a limited and esoteric marketplace (e.g.,
inventory control products) or address mass consumer markets (e.g., word processing,
spreadsheets, computer graphics, multimedia, entertainment, database management, and
personal and business financial applications).

Web applications—called “WebApps,” this network-centric software category spans a wide
array of applications. In their simplest form, WebApps can be little more than a set of linked
hypertext files that present information using text and limited graphics.

Artificial intelligence software—makes use of nonnumerical algorithms to solve complex
problems that are not amenable to computation or straightforward analysis. Applications within
this area include robotics, expert systems, pattern recognition (image and voice), artificial
neural networks, theorem proving, and game playing.

Challenges of Software Engineers

Open-world computing—the rapid growth of wireless networking may soon lead to true
pervasive, distributed computing. The challenge for software engineers will be to develop
systems and application software that will allow mobile devices, personal computers, and
enterprise systems to communicate across vast networks.

Netsourcing—the World Wide Web is rapidly becoming a computing engine as well as a
content provider. The challenge for software engineers is to architect simple (e.g., personal
financial planning) and sophisticated applications that provide a benefit to targeted end-user
markets worldwide.

Open source—a growing trend that results in distribution of source code for systems
applications (e.g., operating systems, database, and development environments) so that many
people can contribute to its development. The challenge for software engineers is

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e to build source code that is self-descriptive
e to develop techniques that will enable both customers and developers
e to know what changes have been made and how those changes manifest themselves within
the software.
Legacy Software
The older programs—often referred to as legacy software—have been the focus of continuous
attention and concern since the 1960s. Dayani-Fard and his colleagues describe legacy software
in the following way: Legacy software systems were developed decades ago and have been
continually modified to meet changes in business requirements and computing platforms. The
proliferation of such systems is causing headaches for large organizations who find them costly
to maintain and risky to evolve. Legacy systems often evolve for one or more of the following
reasons:
e The software must be adapted to meet the needs of new computing environments or
technology.
e The software must be enhanced to implement new business requirements.
e The software must be extended to make it interoperable with other more modern systems or
databases.
e The software must be re-architected to make it viable within a network environment.
Why We Need Software Engineering
Software development today faces four major challenges that make building software
tough:

1. Everyone Has an Opinion (Complexity of Requirements): Software is used by
everyone, from regular people to governments, and all these users (stakeholders) have
different, conflicting ideas about what the software should do. So the developers should
make a concerted effort to truly understand the problem and what all the users need
before starting coding.

2. Systems are Hugely Complex (Complexity of Design): Software is no longer simple
programs; it's vast, often built by huge teams, and embedded in critical things like

medical or defense systems. Everything has to work together perfectly. Since Design

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

becomes a pivotal activity, the developer should need a robust plan to manage the

massive complexity and ensure all parts of the system interact correctly.

. Failure is Catastrophic (Need for Quality): Businesses and governments rely on

software for everything. If it breaks, the result can range from a minor annoyance to a
major disaster. Software must be high quality. It needs to be thoroughly tested and

reliable because the stakes are too high for failure.

. Software Lives and Grows (Need for Maintainability): Successful software will be

used for a long time by many people, and as time passes, people will constantly demand
new features, updates, and adaptations. Software must be maintainable. It needs to be
built in a way that makes future changes and improvements possible without breaking
the whole system.

Because of these four critical challenges, software in all its forms must be engineered.

This systematic, disciplined approach is called Software Engineering.

Software engineering is the establishment and use of sound engineering principles in

order to obtain economical software that is reliable and works efficiently on real machines.

THE SOFTWARE PROCESS

A process is a collection of activities, actions, and tasks that are performed when some

work product is to be created.

An Activity strives to achieve a broad objective (e.g., communication with stakeholders)
and is applied regardless of the application domain, size of the project, complexity of the
effort, or degree of rigor with which software engineering is to be applied.

An action (e.g., architectural design) encompasses a set of tasks that produce a major work
product (e.g., an architectural design model).

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that

produces a tangible outcome.

In software engineering, a process is an adaptable approach that enables the people

doing the work (the software team) to pick and choose the appropriate set of work actions and

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

tasks. The intent is always to deliver software in a timely manner and with sufficient quality to
satisfy those who have sponsored its creation and those who will use it.
GENERIC PROCESS FRAMEWORK:

A generic process framework for software engineering encompasses five activities:
Communication: Understand what stakeholders want by discussing and gathering their needs
before starting the technical work.

Planning: Create a project roadmap that lists tasks, risks, resources, deliverables, and the
schedule.

Modeling: Make simple and detailed sketches (models) to understand requirements and plan
how the software will work.

Construction: Write the code and test it to find and fix errors.

Deployment: Deliver the software to the customer and gather feedback for improvement.

These five generic framework activities can be used during the development of small,
simple programs, the creation of large Web applications, and for the engineering of large,
complex computer-based systems.

Process flow:

It describes how the framework activities and the actions and tasks that occur within
each framework activity are organized with respect to sequence and time and is illustrated in
Figure. There are four types of process flow.

1. A linear process flow executes each of the five framework activities in sequence, beginning
with communication and culminating with deployment

2. An iterative process flow repeats one or more of the activities before proceeding to the
next.

3. An evolutionary process flow executes the activities in a “circular” manner. Each circuit
through the five activities leads to a more complete version of the software.

4. A parallel process flow executes one or more activities in parallel with other activities

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

—=| Communication f—=| Plonning — Modeling J—=| Construction J—=| Deployment J—

a) Linear process flow

—=| Communication f—=| Planning —=| Modeling J—=| Consiruction f—=| Deployment §—

%’)/’)

(b} lterative process flow

Planning ———

/ Modeling

—| Communicaticn

Incremh :
, =— Deployment Construction
released

[c) Evolutionary process flow

—={ Communication f—={ Planning

L Maodeling J Time —-
L Construction f—=| Deployment I—

(d) Parallel process flow

The details of the software process will be quite different in each case, but the
framework activities remain the same. For many software projects, framework activities are
applied iteratively as a project progresses. That is, communication, planning, modeling,
construction, and deployment are applied repeatedly through a number of project iterations.
Each project iteration produces a software increment that provides stakeholders with a subset of
overall software features and functionality. As each increment is produced, the software
becomes more and more complete.

Software engineering process framework activities are complemented by a number of

umbrella activities. In general, umbrella activities are applied throughout a software project and

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

help a software team manage and control progress, quality, change, and risk. Typical umbrella

activities include:

Software project tracking and control — Monitor progress against the plan and take action
to keep the project on schedule.

Risk management — Identify and evaluate risks that could affect the project or product
quality.

Software quality assurance — Plan and perform activities to ensure the software meets
quality standards.

Technical reviews — Examine work products to find and fix errors early.

Measurement — Collect useful process and product data to help the team deliver what
stakeholders need.

Software configuration management — Control and manage changes made throughout the
software process.

Reusability management — Set rules and processes to enable effective reuse of components
and work products.

Work product preparation and production — Create the required documents, models,

logs, and other artifacts.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Software process

Process framework

Umbrella activities

framewark activity # |

soltwore engineering oction 1.1
wairk ik,
% i
ok sals waork producs

el By paarEnoe palni

proech mel miones

soltware enginesting action g1k
wark tasks
Tk sah work producy
ipal By padabance poinh

propect med saoneg

framework activity # n

software engineering oction #n_]

wiath smaky

warl procues

gkl auuronce points
et milsdesi

Tk et

softeare engineering oction #n.m

wiorh saahy
warl procucts

guodly onoromes points
pretecl milssiorey

Process Patterns

A process pattern describes a process-related problem that is encountered during
software engineering work, identifies the environment in which the problem has been
encountered, and suggests one or more proven solutions to the problem.

A process pattern provides the template—a consistent method for describing problem
solutions within the context of the software process. By combining patterns, a software team
can solve problems and construct a process that best meets the needs of a project. Patterns can
be defined at any level of abstraction.

A pattern might be used to describe a problem (and solution) associated with a complete
process model (e.g., prototyping). In other situations, patterns can be used to describe a

problem (and solution) associated with a framework activity (e.g., planning) or an action within

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

a framework activity (e.g., project estimating). Ambler has proposed a template for describing a
process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the
software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the
problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for the process.
A framework activity encompasses multiple actions and work tasks, a stage pattern
incorporates multiple task patterns that are relevant to the stage. An example of a stage
pattern might be Establishing Communication.

2. Task pattern—defines a problem associated with a software engineering action or work
task and relevant to successful software engineering practice (e.g., RequirementsGathering
is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the
process, even when the overall flow of activities is iterative in nature.

Initial context. Describes the conditions under which the pattern applies.

1. What organizational or team-related activities have already occurred?

2. What is the entry state for the process?

3. What software engineering information or project information already exists

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. It describes how the initial state
of the process is modified as a consequence of the initiation of the pattern. It also describes how
software engineering information or project information is transformed as a consequence of the
successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been
successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process?

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

(3) What software engineering information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this one. This
may be represented as a hierarchy or in some other diagrammatic form. For example, the stage
pattern Communication encompasses the task patterns: ProjectTeam, CollaborativeGuidelines,
Scopelsolation, RequirementsGathering, ConstraintDescription, and ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the pattern is applicable.
For example, Communication is mandatory at the beginning of every software project, is
recommended throughout the software project, and is mandatory once the deployment activity

is under way.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS
PRACTICES

