

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

Transaction in DBMS

A transaction refers to a sequence of one or more operations (such as read, write, update,

or delete) performed on the database as a single logical unit of work.

A transaction ensures that either all the operations are successfully executed (committed)

or none of them take effect (rolled back).

Transactions are designed to maintain the integrity, consistency and reliability of the

database, even in the case of system failures or concurrent access.

Transaction

All types of database access operation which are held between the beginning and end

transaction statements are considered as a single logical transaction. During the

transaction the database is inconsistent. Only once the database is committed the state is

changed from one consistent state to another.

Example: Let’s consider an online banking application:

Transaction: When a user performs a money transfer, several operations occur, such as:

Reading the account balance of the sender.

Writing the deducted amount from the sender’s account.

Writing the added amount to the recipient’s account.

In a transaction, all these steps should either complete successfully or, if any error occurs,

the database should rollback to its previous state, ensuring no partial data is written to the

system.

Facts about Database Transactions

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

A transaction is a program unit whose execution may or may not change the contents of a

database.

The transaction is executed as a single unit.

If the database operations do not update the database but only retrieve data, this type of

transaction is called a read-only transaction.

A successful transaction can change the database from one CONSISTENT STATE to

another.

DBMS transactions must be .

If the database were in an inconsistent state before a transaction, it would remain in the

inconsistent state after the transaction.

Operations of Transaction

A user can make different types of requests to access and modify the contents of a

database. So, we have different types of operations relating to a transaction. They are

discussed as follows:

1) Read(X)

A read operation is used to read the value of a particular database element X and stores it

in a temporary buffer in the main memory for further actions such as displaying that

value.

Example: For a banking system, when a user checks their balance, a Read operation is

performed on their account balance:

SELECT balance FROM accounts WHERE account_id = 'A123';

This updates the balance of the user's account after withdrawal.

2) Write(X)

A write operation stores updated data from main memory back to the database. It usually

follows a read, where data is fetched, modified (e.g., arithmetic changes), and then

written back to save the updated value.

Example: For the banking system, if a user withdraws money, a Write operation is

performed after the balance is updated:

UPDATE accounts SET balance = balance - 100 WHERE account_id = 'A123';

This updates the balance of the user’s account after withdrawal.

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

3) Commit

This operation in transactions is used to maintain integrity in the database. Due to some

failure of power, hardware, or software, etc., a transaction might get interrupted before all

its operations are completed. This may cause ambiguity in the database, i.e. it might get

inconsistent before and after the transaction.

Example: After a successful money transfer in a banking system, a Commit operation

finalizes the transaction:

COMMIT;

Once the transaction is committed, the changes to the database are permanent, and the

transaction is considered successful.

4) Rollback

A rollback undoes all changes made by a transaction if an error occurs, restoring the

database to its last consistent state. It helps prevent data inconsistency and ensures safety.

Example: Suppose during the money transfer process, the system encounters an issue,

like insufficient funds in the sender’s account. In that case, the transaction is rolled back:

ROLLBACK;

This will undo all the operations performed so far and ensure that the database remains

consistent.

ACID Properties of Transaction

Transactions in DBMS must ensure data is accurate and reliable. They follow four key

ACID properties:

Atomicity: A transaction is all or nothing. If any part fails, the entire transaction is rolled

back. Example: While transferring money, both debit and credit must succeed. If one

fails, nothing should change.

Consistency: A transaction must keep the database in a valid state, moving it from one

consistent state to another. Example: If balance is ₹1000 and ₹200 is withdrawn, the new

balance should be ₹800.

Isolation: Transactions run independently. One transaction’s operations should not affect

another’s intermediate steps. Example: Two users withdrawing from the same account

must not interfere with each other’s balance updates.

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

Durability: Once a transaction is committed, its changes stay even if the system crashes.

Example: After a successful transfer, the updated balance remains safe despite a power

failure.

Read more about

Transaction Schedules

When multiple transaction requests are made at the same time, we need to decide their

order of execution. Thus, a transaction schedule can be defined as a chronological order

of execution of multiple transactions. Example: After a successful transfer, the updated

balance remains safe despite a power failure.

There are broadly two types of transaction schedules discussed as follows:

i) Serial Schedule

In a serial schedule, transactions execute one at a time, ensuring database consistency but

increasing waiting time and reducing system throughput. To improve throughput while

maintaining consistency, concurrent schedules with strict rules are used, allowing safe

simultaneous execution of transactions.

ii) Non-Serial Schedule

Non-serial schedule is a type of transaction schedule where multiple transactions are

executed concurrently, interleaving their operations, instead of running one after another.

It improves system efficiency but requires concurrency control to maintain database

consistency.

A transaction can be defined as a group of tasks. A single task is the minimum processing

unit which cannot be divided further.

Lets take an example of a simple transaction. Suppose a bank employee transfers Rs 500

from A's account to B's account. This very simple and small transaction involves several

low-level tasks.

As Account

Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

Close_Account(A)

Bs Account

Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

ACID Properties

A transaction is a very small unit of a program and it may contain several lowlevel tasks.

A transaction in a database system must maintain Atomicity, Consistency, Isolation,

and Durability − commonly known as ACID properties − in order to ensure accuracy,

completeness, and data integrity.

Atomicity − This property states that a transaction must be treated as an atomic unit, that

is, either all of its operations are executed or none. There must be no state in a database

where a transaction is left partially completed. States should be defined either before the

execution of the transaction or after the execution/abortion/failure of the transaction.

Consistency − The database must remain in a consistent state after any transaction. No

transaction should have any adverse effect on the data residing in the database. If the

database was in a consistent state before the execution of a transaction, it must remain

consistent after the execution of the transaction as well.

Durability − The database should be durable enough to hold all its latest updates even if

the system fails or restarts. If a transaction updates a chunk of data in a database and

commits, then the database will hold the modified data. If a transaction commits but the

system fails before the data could be written on to the disk, then that data will be updated

once the system springs back into action.

Isolation − In a database system where more than one transaction are being executed

simultaneously and in parallel, the property of isolation states that all the transactions will

be carried out and executed as if it is the only transaction in the system. No transaction

will affect the existence of any other transaction.

Serializability

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

When multiple transactions are being executed by the operating system in a

multiprogramming environment, there are possibilities that instructions of one

transactions are interleaved with some other transaction.

Schedule − A chronological execution sequence of a transaction is called a schedule. A

schedule can have many transactions in it, each comprising of a number of

instructions/tasks.

Serial Schedule − It is a schedule in which transactions are aligned in such a way that one

transaction is executed first. When the first transaction completes its cycle, then the next

transaction is executed. Transactions are ordered one after the other. This type of

schedule is called a serial schedule, as transactions are executed in a serial manner.

In a multi-transaction environment, serial schedules are considered as a benchmark. The

execution sequence of an instruction in a transaction cannot be changed, but two

transactions can have their instructions executed in a random fashion. This execution

does no harm if two transactions are mutually independent and working on different

segments of data; but in case these two transactions are working on the same data, then

the results may vary. This ever-varying result may bring the database to an inconsistent

state.

To resolve this problem, we allow parallel execution of a transaction schedule, if its

transactions are either serializable or have some equivalence relation among them.

Equivalence Schedules

An equivalence schedule can be of the following types −

Result Equivalence

If two schedules produce the same result after execution, they are said to be result

equivalent. They may yield the same result for some value and different results for

another set of values. That's why this equivalence is not generally considered significant.

View Equivalence

Two schedules would be view equivalence if the transactions in both the schedules

perform similar actions in a similar manner.

For example −

If T reads the initial data in S1, then it also reads the initial data in S2.

If T reads the value written by J in S1, then it also reads the value written by J in S2.

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

If T performs the final write on the data value in S1, then it also performs the final write

on the data value in S2.

Conflict Equivalence

Two schedules would be conflicting if they have the following properties −

Both belong to separate transactions.

Both accesses the same data item.

At least one of them is "write" operation.

Two schedules having multiple transactions with conflicting operations are said to be

conflict equivalent if and only if −

Both the schedules contain the same set of Transactions.

The order of conflicting pairs of operation is maintained in both the schedules.

Note − View equivalent schedules are view serializable and conflict equivalent schedules

are conflict serializable. All conflict serializable schedules are view serializable too.

States of Transactions

A transaction in a database can be in one of the following states –

Active − In this state, the transaction is being executed. This is the initial state of every

transaction.

Partially Committed − When a transaction executes its final operation, it is said to be in a

partially committed state.

 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

Failed − A transaction is said to be in a failed state if any of the checks made by the

database recovery system fails. A failed transaction can no longer proceed further.

Aborted − If any of the checks fails and the transaction has reached a failed state, then the

recovery manager rolls back all its write operations on the database to bring the database

back to its original state where it was prior to the execution of the transaction.

Transactions in this state are called aborted. The database recovery module can select one

of the two operations after a transaction aborts −

Re-start the transaction

Kill the transaction

Committed − If a transaction executes all its operations successfully, it is said to be

committed. All its effects are now permanently established on the database system.

