24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT III - INPUT / OUTPUT

Streams classes: Byte — Character - File class - File operations - Console class —
Serialization. Multithreading: Java thread model — Creating thread — Creating multi
thread - Thread priorities — Synchronization - Inter thread communication.

STREAMS CLASSES
The Java Input/Output (I/O) is a part of java.io package. This package contains a
relatively large number of classes that support input and output operations. These classes
may be categorized into groups based on the data type on which they operate.

1. Byte Stream Classes that provide support for handling I/O operations on bytes.

2. Character Stream Classes that provide support for managing I/O operations on

characters.

These two groups may further be classified based on their purpose. Figure 3 below shows
how stream classes are grouped based on their functions. Byte stream and Character
stream classes contain specialized input and output stream classes to deal with input and
output operations independently on various types of streams.

Java Stream Classes

Byte Stream Classes Character Stream Classes
(a) InputStream Classes (a) Reader Classes
(b} OutputStream Classes {b) Writer Classes

BYTE STREAM CLASSES

Byte streams provide a convenient means for handling input and output of bytes.
Byte streams are used, for example, when reading or writing binary (8-bit) data. Byte
streams are defined by using two class hierarchies. At the top there are two abstract
classes: java.io.InputStream and java.io.OutputStream. Each of these abstract classes
has several concrete subclasses of each of these. The abstract classes InputStream and
OutputStream define several key methods that the other stream classes implement. Two
of the most important are read() and write(), which, respectively, read and write bytes of
data. Both methods are declared as abstract inside InputStream and OutputStream. They
are overridden by derived stream classes. The java.io package can be categorized along
with its stream classes in a hierarchy structure shown below:

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

java.io

——— InputStream ———

=

'———— OutputStream ——

=

InputStream Classes

Byte Amray Inputitream

File InputStream

ObjectInputStream

FilterInputStream

Piped InputStream

Sequencelnputitream

String BufferInputString

Byte Array DutputSitream

File DutputStream

Filter OutputStream

ObjectOutputStream

Pipad OutputSteamn

The InputStream class is used for reading the data such as a byte and array of

bytes from an input source. An input source can be a file, a string, or memory that may

contain the data. It is an abstract class that defines the programming interface for all input
streams that are inherited from it. An input stream is automatically opened when we

create it. We cans explicitly close a stream with the close() method, or let it be closed

implicitly when the object is found as a garbage. InputStream is inherited from the
java.lang.Object class. Each subclass of the InputStream provided by the java.io

package is intended for a different purpose. The subclasses inherited from the
InputStream class can be seen in a hierarchy manner shown below:

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

—= Byte Array Inputitream

——— File InputStrean
- DataInputSiream

I ObjectInputStream
—== LineNumberInputStream

InputStream ——— FilterInputSheam e

= BufferedInputStream
— Piped InputStream

L—s PushbackInputStream
—s Sequencelnputft-eam

L—s String BufferInputString

Summary of InputStream Methods

int available() Returns the number of bytes that can be read
\% .
from the input stream

oid close() Closes this input stream and releases any system
A% s .
resources associated with the stream.

void mark(int readlimit) Marks the current position in this input stream.

boolean markSupported() ;l“eessetf nllfe ttll;l(l)sd Sinput stream supports the mark and

. Reads the next byte of data from the input
abstract int read() et

Reads some number of bytes from the input
int read(byte|[] array) stream and stores them into the buffer array
named array.

int read(byte[] array, int off, Reads up to len bytes of data from the input
int len) stream into an array of bytes.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Repositions this stream to the position at the time
void reset() the mark method was last called on this input
stream.

Skips over and discards n bytes of data from the

long skip(long n) input stream

OutputStream Classes

The OutputStream class is a sibling to InputStream that is used for writing bytes
and array of bytes to an output source. Similar to input sources, an output source can be
anything such as a file, a string, or memory containing the data. Like an input stream, an
output stream is automatically opened when we create it. We can explicitly close an
output stream with the close() method, or let it be closed implicitly when the object is
garbage collected. OutputStream is also inherited from the java.lang.Object class. Each
subclass of the OutputStream provided by the java.io package is intended for a different
purpose. The classes inherited from the OutputStream class can be seen in a hierarchy
structure shown below:

3= Byte Array Outputiteam

> File DutputStream — DataOutputStream
OutputStream - FilterOutputStream - PrintStream

© D L BufferedOutputStream

L Piped OutputStream

Summary of OutputStream Methods

oid close() Closes this output stream and releases any system
A% . . .
resources associated with this stream.

void flush() Flushes this output stream and forces any
buffered output bytes to be written out.

. . Writes array.length bytes from the specified byte
d write(byt
void write(bytel] array) array to this output stream.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

void write(byte[] array, int Writes len bytes from the specified byte array
off, int len) starting at offset off to this output stream.

abstract void write(int array) Writes the specified byte to this output stream.

CHARACTER STREAM CLASSES

Java offers another type of streams called Character Streams, which are used to
read from the input device and write to the output device in units of 16-bit (Unicode)
characters. In some cases, character streams are more efficient than byte streams. The
oldest version of Java (Java 1.0) did not include character streams and, thus, all I/O was
byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
classes and methods were deprecated.

Character streams are defined by using two class hierarchies. At the top there are
two abstract classes, Reader and Writer. These abstract classes handle Unicode
character (16-bit) streams. Java has several concrete subclasses of each of these. The
abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read() and write(), which read
and write characters of data, respectively. These methods are overridden by derived
stream classes.

Reader Stream Classes

The Reader class contains methods that are identical to those available in the
InputStream class, except Reader is designed to handle characters. Therefore, Reader
classes can perform all the functions implemented by the InputStream classes. The
hierarchy of Reader character stream classes is shown below:

BufferedReader LineNumberReader

CharArrayReader

{

. InputStreamRead er . FHHJD
‘ Reader ’>
e PushbackRead er

O

StringReader

Pip ed Reader

I

Writer Stream Classes
The Writer class contains methods that are identical to those available in the
OutputStream class, except Writer is designed to handle characters. Therefore, Writer

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

classes can perform all the functions implemented by the OutputStream classes. The
hierarchy of Writer character stream classes is shown below:

Buffered Writer
CharArrayWriter

StringWriter

InputStreamWrit i
putSireamWriter FileWriter

Piped Writer

il

FILE CLASSES

Java File class is a representation of a file or directory pathname. Because file and
directory names have different formats on different platforms, a simple string is not
adequate to name them. Java File class contains several methods for working with the
pathname, deleting and renaming files, creating new directories, listing the contents of a
directory, and determining several common attributes of files and directories.
Features:
It is an abstract representation of files and directory pathnames.
e A pathname, whether abstract or in string form can be either absolute or relative.
The parent of an abstract pathname may be obtained by invoking the getParent()
method of this class.
e First of all, we should create the File class object by passing the filename or
directory name to it. A file system may implement restrictions to certain
operations on the actual file-system object, such as reading, writing, and
executing. These restrictions are collectively known as access permissions.
e Instances of the File class are immutable; that is, once created, the abstract
pathname represented by a File object will never change.
How to Create a File Object?

A File object is created by passing in a string that represents the name of a file, a
String, or another File object. For example,

File a = new File("Welcome.txt");

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Example: Program to check if a file or directory physically exists or not
import java.io.File;

class CheckFileExist

{

public static void main(String[] args)
{
String fname = args[0];
File f = new File(fname);
System.out.println("File name :" + f.getName());
System.out.println("Path: " + f.getPath());
System.out.println("Absolute path:" + f.getAbsolutePath());
System.out.println("Parent:" + f.getParent());
System.out.println("Exists :" + f.exists());
if (f.exists())
{
System.out.println("Is writable:" + f.canWrite());
System.out.println("Is readable" + f.canRead());
System.out.println("Is a directory:" + f.isDirectory());
System.out.println("File Size in bytes " + f.length());

Example: Program to display all the contents of a directory.
import java.io.BufferedReader;

import java.io.File;

import java.io.IOException;

import java.io.InputStreamReader;

class AllDir
{
public static void main(String[] args)throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader
(System.in));

System.out.print("Enter directory path : ");
String dirpath = br.readLine();

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

System.out.print("Enter the directory name : ");
String dname = br.readLine();
File f = new File(dirpath, dname);
if (f.exists())
{
String arr[] = f.list();
int n = arr.length;
for (int 1= 0; 1 <n; i++)

{
System.out.print(arr[i] + " ");
File f1 = new File(farr[1]);
if (fl.isFile())
System.out.println(": is a file");
if (f1.isDirectory())
System.out.println(": is a directory");
h
System.out.println("\nNo of entries in this directory : " + n);
b
else
System.out.println("Directory not found");
b
b
Fields in File Class
Field Type Description

the character or string used to
pathSeperator String separate individual paths in a list
of file system paths.

the character used to separate
pathSeperatorChar Char individual paths in a list of file
system paths.

default name separator character

arator trin :
separato String represented as a string.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

separatorChar Char default name separator character.

Constructors of Java File Class
e File(File parent, String child): Creates a new File instance from a parent abstract
pathname and a child pathname string.
e File(String pathname): Creates a new File instance by converting the given
pathname string into an abstract pathname.
e File(String parent, String child): Creates a new File instance from a parent
pathname string and a child pathname string.
e File(URI uri): Creates a new File instance by converting the given file: URI into
an abstract pathname.
Methods of File Class in Java

Method Description Return
Type
canExecute() Tests whether the application can execute the boolean
file denoted by this abstract pathname.
Tests whether the application can read the file
canRead() denoted by this abstract pathname. boolean
. Tests whether the application can modify the
canWrite() file denoted by this abstract pathname. boolean
compareTo(File Compares two abstract pathnames :
. . nt
pathname) lexicographically.
: Atomically creates a new, empty file named
createNewFile() by this abstract pathname. boolean
createTempFile(String Creates an empty file in the default File
prefix, String suffix) temporary-file directory.
delete() Deletes the file or directory denoted by this boolean
abstract pathname.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-canexecute-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-canread-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-canwrite-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createnewfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createtempfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createtempfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/files-delete-method-in-java-with-examples/

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Tests this abstract pathname for equality with

equals(Object obj) the given object boolean
exists() Tests whether the file or directory denoted by boolean
this abstract pathname exists.
Returns the absolute pathname string of this .
getAbsolutePath() abstract pathname. String
: Returns an array of strings naming the files .
list() and directories in the directory. String[]
getFreeSpace() Returns the number of unallocated bytes in the long
partition.
Returns the name of the file or directory .
getName() denoted by this abstract pathname. String
Returns the pathname string of this abstract .
getParent() I[))athname’s pargent. String
getParentFile() Returns the al;zttr}il;; Igzt,};r;a;l; Ef this abstract File
Converts this abstract pathname into a .
getPath() pathname s‘ging. String
setReadOnly() Marks the file or directory named so that only boolean
M read operations are allowed.
o Tests whether the file denoted by this
isDirectory() pathname is a directory. boolean
isFile() Tests whether the file denoted by this abstract boolean

pathname is a normal file.

MCA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-exists-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getabsolutepath-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-list-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getfreespace-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getname-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getparent-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getparentfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getpath-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadonly-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-isdirectory-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-isfile-method-in-java-with-examples/

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Tests whether the file named by this abstract

isHidden() pathname is a hidden file. boolean
Returns the length of the file denoted by this
length() abstract pathname. long
N Returns an array of abstract pathnames .
listFiles() denoting the files in the directory. File[]
mkdir() Creates the directory named by this abstract boolean
pathname.
renameTo(File dest) Renames the file denoted by this abstract boolean
pathname.
setExecutable(boolean A convenience method to set the owner’s
- boolean
executable) execute permission.
setReadable(boolean A convenience method to set the owner’s read
. boolean
readable) permission.
setReadable(boolean , ,
readable, boolean Sets the ownezrsmoirssei\(f)irybody s read boolean
ownerOnly) P)
setWritable(boolean A convenience method to set the owner’s
) . . boolean
writable) write permission.
toString() Returns the pathname string of this abstract String
pathname.
toURI() Constructs a file URI that represents this URI

abstract pathname.

MCA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-ishidden-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-length-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-listfiles-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-mkdir-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-renameto-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setexecutable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setexecutable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setwritable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setwritable-method-in-java-with-examples/

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

