
 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 UNIT III – INPUT / OUTPUT
 Streams classes: Byte – Character - File class - File operations - Console class –
 Serialization. Multithreading: Java thread model – Creating thread – Creating multi
 thread - Thread priorities – Synchronization - Inter thread communication.

 STREAMS CLASSES
 The Java Input/Output (I/O) is a part of java.io package. This package contains a
 relatively large number of classes that support input and output operations. These classes
 may be categorized into groups based on the data type on which they operate.

 1. Byte Stream Classes that provide support for handling I/O operations on bytes .
 2. Character Stream Classe s that provide support for managing I/O operations on

 characters .
 These two groups may further be classified based on their purpose. Figure 3 below shows
 how stream classes are grouped based on their functions. Byte stream and Character
 stream classes contain specialized input and output stream classes to deal with input and
 output operations independently on various types of streams.

 BYTE STREAM CLASSES
 Byte streams provide a convenient means for handling input and output of bytes.

 Byte streams are used, for example, when reading or writing binary (8-bit) data. Byte
 streams are defined by using two class hierarchies. At the top there are two abstract
 classes: java . io . InputStream and java . io . OutputStream . Each of these abstract classes
 has several concrete subclasses of each of these. The abstract classes InputStream and
 OutputStream define several key methods that the other stream classes implement. Two
 of the most important are read() and write() , which, respectively, read and write bytes of
 data. Both methods are declared as abstract inside InputStream and OutputStream . They
 are overridden by derived stream classes. The java.io package can be categorized along
 with its stream classes in a hierarchy structure shown below:

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 InputStream Classes
 The InputStream class is used for reading the data such as a byte and array of

 bytes from an input source. An input source can be a file , a string , or memory that may
 contain the data. It is an abstract class that defines the programming interface for all input
 streams that are inherited from it. An input stream is automatically opened when we
 create it. We cans explicitly close a stream with the close() method, or let it be closed
 implicitly when the object is found as a garbage. InputStream is inherited from the
 java.lang.Object class. Each subclass of the InputStream provided by the java.io
 package is intended for a different purpose. The subclasses inherited from the
 InputStream class can be seen in a hierarchy manner shown below:

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 Summary of InputStream Methods

 int available() Returns the number of bytes that can be read
 from the input stream

 void close() Closes this input stream and releases any system
 resources associated with the stream.

 void mark(int readlimit) Marks the current position in this input stream.

 boolean markSupported() Tests if this input stream supports the mark and
 reset methods.

 abstract int read() Reads the next byte of data from the input
 stream.

 int read(byte[] array)
 Reads some number of bytes from the input
 stream and stores them into the buffer array
 named array.

 int read(byte[] array, int off,
 int len)

 Reads up to len bytes of data from the input
 stream into an array of bytes.

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 void reset()
 Repositions this stream to the position at the time
 the mark method was last called on this input
 stream.

 long skip(long n) Skips over and discards n bytes of data from the
 input stream.

 OutputStream Classes
 The OutputStream class is a sibling to InputStream that is used for writing bytes

 and array of bytes to an output source. Similar to input sources, an output source can be
 anything such as a file, a string, or memory containing the data. Like an input stream, an
 output stream is automatically opened when we create it. We can explicitly close an
 output stream with the close() method, or let it be closed implicitly when the object is
 garbage collected. OutputStream is also inherited from the java.lang.Object class. Each
 subclass of the OutputStream provided by the java.io package is intended for a different
 purpose. The classes inherited from the OutputStream class can be seen in a hierarchy
 structure shown below:

 Summary of OutputStream Methods

 void close() Closes this output stream and releases any system
 resources associated with this stream.

 void flush() Flushes this output stream and forces any
 buffered output bytes to be written out.

 void write(byte[] array) Writes array.length bytes from the specified byte
 array to this output stream.

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 void write(byte[] array, int
 off, int len)

 Writes len bytes from the specified byte array
 starting at offset off to this output stream.

 abstract void write(int array) Writes the specified byte to this output stream.

 CHARACTER STREAM CLASSES
 Java offers another type of streams called Character Streams , which are used to

 read from the input device and write to the output device in units of 16-bit (Unicode)
 characters. In some cases, character streams are more efficient than byte streams. The
 oldest version of Java (Java 1.0) did not include character streams and, thus, all I/O was
 byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
 classes and methods were deprecated.

 Character streams are defined by using two class hierarchies. At the top there are
 two abstract classes, Reader and Writer . These abstract classes handle Unicode
 character (16-bit) streams. Java has several concrete subclasses of each of these. The
 abstract classes Reader and Writer define several key methods that the other stream
 classes implement. Two of the most important methods are read() and write() , which read
 and write characters of data, respectively. These methods are overridden by derived
 stream classes.
 Reader Stream Classes

 The Reader class contains methods that are identical to those available in the
 InputStream class, except Reader is designed to handle characters. Therefore, Reader
 classes can perform all the functions implemented by the InputStream classes. The
 hierarchy of Reader character stream classes is shown below:

 Writer Stream Classes
 The Writer class contains methods that are identical to those available in the

 OutputStream class, except Writer is designed to handle characters. Therefore, Writer

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 classes can perform all the functions implemented by the OutputStream classes. The
 hierarchy of Writer character stream classes is shown below:

 FILE CLASSES
 Java File class is a representation of a file or directory pathname. Because file and

 directory names have different formats on different platforms, a simple string is not
 adequate to name them. Java File class contains several methods for working with the
 pathname, deleting and renaming files, creating new directories, listing the contents of a
 directory, and determining several common attributes of files and directories.
 Features:
 It is an abstract representation of files and directory pathnames.

 ● A pathname, whether abstract or in string form can be either absolute or relative.
 The parent of an abstract pathname may be obtained by invoking the getParent()
 method of this class.

 ● First of all, we should create the File class object by passing the filename or
 directory name to it. A file system may implement restrictions to certain
 operations on the actual file-system object, such as reading, writing, and
 executing. These restrictions are collectively known as access permissions.

 ● Instances of the File class are immutable; that is, once created, the abstract
 pathname represented by a File object will never change.

 How to Create a File Object?
 A File object is created by passing in a string that represents the name of a file, a

 String, or another File object. For example,
 File a = new File("Welcome.txt");

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 Example: Program to check if a file or directory physically exists or not
 import java.io.File;
 class CheckFileExist
 {

 public static void main(String[] args)
 {

 String fname = args[0];
 File f = new File(fname);
 System.out.println("File name :" + f.getName());
 System.out.println("Path: " + f.getPath());
 System.out.println("Absolute path:" + f.getAbsolutePath());
 System.out.println("Parent:" + f.getParent());
 System.out.println("Exists :" + f.exists());
 if (f.exists())
 {

 System.out.println("Is writable:" + f.canWrite());
 System.out.println("Is readable" + f.canRead());
 System.out.println("Is a directory:" + f.isDirectory());
 System.out.println("File Size in bytes " + f.length());

 }
 }

 }

 Example: Program to display all the contents of a directory.
 import java.io.BufferedReader;
 import java.io.File;
 import java.io.IOException;
 import java.io.InputStreamReader;
 class AllDir
 {

 public static void main(String[] args)throws IOException
 {

 BufferedReader br = new BufferedReader(new InputStreamReader
 (System.in));

 System.out.print("Enter directory path : ");
 String dirpath = br.readLine();

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 System.out.print("Enter the directory name : ");
 String dname = br.readLine();
 File f = new File(dirpath, dname);
 if (f.exists())
 {

 String arr[] = f.list();
 int n = arr.length;
 for (int i = 0; i < n; i++)
 {

 System.out.print(arr[i] + " ");
 File f1 = new File(f,arr[i]);
 if (f1.isFile())

 System.out.println(": is a file");
 if (f1.isDirectory())

 System.out.println(": is a directory");
 }
 System.out.println("\nNo of entries in this directory : " + n);

 }
 else

 System.out.println("Directory not found");
 }

 }
 Fields in File Class

 Field Type Description

 pathSeperator String
 the character or string used to
 separate individual paths in a list
 of file system paths.

 pathSeperatorChar Char
 the character used to separate
 individual paths in a list of file
 system paths.

 separator String default name separator character
 represented as a string.

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 separatorChar Char default name separator character.

 Constructors of Java File Class
 ● File(File parent, String child): Creates a new File instance from a parent abstract

 pathname and a child pathname string.
 ● File(String pathname): Creates a new File instance by converting the given

 pathname string into an abstract pathname.
 ● File(String parent, String child): Creates a new File instance from a parent

 pathname string and a child pathname string.
 ● File(URI uri): Creates a new File instance by converting the given file: URI into

 an abstract pathname.
 Methods of File Class in Java

 Method Description
 Return
 Type

 canExecute() Tests whether the application can execute the
 file denoted by this abstract pathname. boolean

 canRead() Tests whether the application can read the file
 denoted by this abstract pathname. boolean

 canWrite() Tests whether the application can modify the
 file denoted by this abstract pathname. boolean

 compareTo(File
 pathname)

 Compares two abstract pathnames
 lexicographically. int

 createNewFile() Atomically creates a new, empty file named
 by this abstract pathname. boolean

 createTempFile(String
 prefix, String suffix)

 Creates an empty file in the default
 temporary-file directory. File

 delete() Deletes the file or directory denoted by this
 abstract pathname. boolean

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-canexecute-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-canread-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-canwrite-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createnewfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createtempfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-createtempfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/files-delete-method-in-java-with-examples/

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 equals(Object obj) Tests this abstract pathname for equality with
 the given object. boolean

 exists() Tests whether the file or directory denoted by
 this abstract pathname exists. boolean

 getAbsolutePath() Returns the absolute pathname string of this
 abstract pathname. String

 list() Returns an array of strings naming the files
 and directories in the directory. String[]

 getFreeSpace() Returns the number of unallocated bytes in the
 partition. long

 getName() Returns the name of the file or directory
 denoted by this abstract pathname. String

 getParent() Returns the pathname string of this abstract
 pathname’s parent. String

 getParentFile() Returns the abstract pathname of this abstract
 pathname’s parent. File

 getPath() Converts this abstract pathname into a
 pathname string. String

 setReadOnly() Marks the file or directory named so that only
 read operations are allowed. boolean

 isDirectory() Tests whether the file denoted by this
 pathname is a directory. boolean

 isFile() Tests whether the file denoted by this abstract
 pathname is a normal file. boolean

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-exists-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getabsolutepath-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-list-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getfreespace-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getname-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getparent-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getparentfile-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-getpath-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadonly-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-isdirectory-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-isfile-method-in-java-with-examples/

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 isHidden() Tests whether the file named by this abstract
 pathname is a hidden file. boolean

 length() Returns the length of the file denoted by this
 abstract pathname. long

 listFiles() Returns an array of abstract pathnames
 denoting the files in the directory. File[]

 mkdir() Creates the directory named by this abstract
 pathname. boolean

 renameTo(File dest) Renames the file denoted by this abstract
 pathname. boolean

 setExecutable(boolean
 executable)

 A convenience method to set the owner’s
 execute permission. boolean

 setReadable(boolean
 readable)

 A convenience method to set the owner’s read
 permission. boolean

 setReadable(boolean
 readable, boolean

 ownerOnly)

 Sets the owner’s or everybody’s read
 permission. boolean

 setWritable(boolean
 writable)

 A convenience method to set the owner’s
 write permission. boolean

 toString() Returns the pathname string of this abstract
 pathname. String

 toURI() Constructs a file URI that represents this
 abstract pathname. URI

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/file-ishidden-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-length-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-listfiles-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-mkdir-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-renameto-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setexecutable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setexecutable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setreadable-function-in-java-with-examples/
https://www.geeksforgeeks.org/file-setwritable-method-in-java-with-examples/
https://www.geeksforgeeks.org/file-setwritable-method-in-java-with-examples/

 24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

 MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

