
24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT II - Managing simple Input and Output operations - Operators and Expressions -

Decision Making: Branching statements, looping statements - Function: Declaration,

Definition - Passing arguments by value - Recursion - Storage classes.

2.5 RECURSION

Recursion is defined as the function that calls itself repeatedly until condition is reached.

But while using recursion, programmers need to be careful to define an exit condition from the

function; otherwise it will go into an infinite loop.

Syntax:

Function1()

{

Function1();

}

Example:

Calculating the factorial of a number

Fact (n)= n*fact(n-1);

6! = 6*fact(n);

6! = 6 *5*fact(4)

6! = 6 * 5 * 4 *fact(3)

6! = 6 * 5 * 4 * 3 *fact(2)

6! =6 *5 * 4 * 3 *2 * fact(1)

6! = 6 *5 * 4 * 3 *2 * 1

6!=120

Advantage of recursion

Recursion makes program elegant and cleaner.

All algorithms can be defined recursively which makes it easier to visualize and prove.

Reduce unnecessary calling of function

Easy to solve complex problems

Direct Recursion:

A function is directly recursive if it calls itself.

A()

{

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

….

A(); // call to itself

….

}

Indirect Recursion:

Function calls another function, which in turn calls the original function.

A()

{

…

B();

…

}

B()

{

…

A();// function B calls A

…

}

Linear Recursion - It makes only one recursive call.

Binary Recursion - It calls itself twice.

N-ary recursion - It calls itself n times.

Program 1 : Find factorial using recursion

#include<stdio.h>

#include<conio.h>

int fact(int);

void main()

{

int n, Result;

printf(“\n Enter any number:”);

scanf(“%d”, &n);

Result = fact(n);

printf (“Factorial value = %d”, Result);

getch();

}

int fact (int x)

{

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

if (x == 0)

return 1;

else

return x * fact(x – 1);

}

Output:

Enter any number: 4

Factorial value = 24

Program 2 : Generate the Fibonacci Series Using Recursive Function

#include<stdio.h>

#include<conio.h>

int fib(int val);

void main ()

{

int i, n;

printf(“Enter the number”);

scanf (“%d”, &n);

printf(“\n Fibonacci sequence:”);

for (i = 0 , i < n, i++)

printf(“%d ”, fib(i));

getch();

}

int fib (int n)

{

if (n== 0)

{

return 0;

}

else if (n == 1)

{

return 1;

}

else

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

return fib(n – 1) + fib (n– 2);

}

Output

Enter the number: 6

Fibonacci sequence : 0 1 1 2 3 5

2.1 STORAGE CLASSES

A storage class defines the scope and life-time of variables and functions within a C

Program. It determines the part of memory.

In C, There are 4 storage classes. They are,

1. Automatic Storage class

2. External Storage class

3. Static Storage class

4. Register Storage class

(i) Automatic Storage class: auto

The auto storage class is the default storage class for all local variables. It is the temporary memory

space.

Scope: Variable defined with auto storage class is local to the function in which they are defined.

Default Initial Value: Any random value i.e garbage value.

Lifetime: Till the end of the function/method block where the variable is defined.

Syntax:

auto datatype var1,var2,…..,varn;

Example

#include<stdio.h>

#include<conio.h>

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

void main()

{

int a;

// or

auto int a; //Both are same

….

}

(ii) External or Global Storage class: extern

It is the external storage class for all global variables. It is declared out of the main function.

Scope: Global i.e everywhere in the program.

Default initial value: 0(zero).

Lifetime: Till the program doesn't finish its execution, we can access global variables.

Syntax:

extern datatype var1,var2,…..,varn;

Example

#include<stdio.h>

#include<conio.h>

extern int a; // global variable

void main()

{

…..

}

(iii) Static Storage class : static

The static storage class is the default storage class for all global variables. It is the

permanent memory space. It is declared out of the main function.

Scope: Local to the block in which the variable is defined

Default initial value: 0(Zero).

Lifetime: Till the whole program doesn't finish its execution.

Syntax:

static datatype var1,var2,…..,varn;

Example

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT II

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#include<stdio.h>

#include<conio.h>

static int a; // both are same

//or

int a;

void main()

{

…..

}

(iv) Register Storage class: register

It is the special storage area within the computer‟s central processing unit.

Scope: Local to the function in which it is declared.

Default initial value: Any random value i.e garbage value

Lifetime: Till the end of function/method block, in which the variable is defined.

Syntax:

register datatype var1,var2,…..,varn;

Example

#include<stdio.h>

#include<conio.h>

void main()

{

register int a;

register int b;

…..

}

