WIEN BRIDGE OSCILLATOR

- It uses a non-inverting amplifier (does not provide any phase shift during amplifier stage).
- As total phase shift required is 0^0 or $2n\pi$ radians, in when bridge type no phase shift is necessary through feedback.
- Thus the total phase shift around a loop is 0^0 .
- A Wien-Bridge Oscillator is a type of phase-shift oscillator which is based upon a Wien-Bridge network comprising of four arms connected in a bridge fashion.
- Here two arms are purely resistive while the other two arms are a combination of resistors and capacitors.
- In particular, one arm has resistor and capacitor connected in series (R_1 and C_1) while the other has them in parallel (R_2 and C_2).
- Two arms of the bridge R_1 , C_1 in series and R_2 , C_2 in parallel are frequency sensitive.
- In this circuit, at high frequencies, the reactance of the capacitors C_1 and C_2 will be much less due to which the voltage V_0 will become zero as R_2 will be shorted.
- At low frequencies, the reactance of the capacitors C₁ and C₂ will become very high. However even in this case, the output voltage V₀ will remain at zero only, as the capacitor C₁ would be acting as an open circuit.
- This kind of behavior exhibited by the Wien-Bridge network makes it a lead-lag circuit in the case of low and high frequencies, respectively

Transistorised wien bridge oscillator:

- In this circuit two stage common emitter transistor amplifiers is used.
- Each stage contributes 180° phase shift hence the total phase shift due to the amplifier stage becomes 360° which is necessary as per the oscillator conditions.
- The bridge consists of R and C in series, R and C in parallel, R₃ and R₄.
- The feedback is applied from the collector of Q_2 through the coupling capacitor, to the bridge circuit.
- The two stage amplifier provides a gain much more than 3 and it is necessary to reduce it.

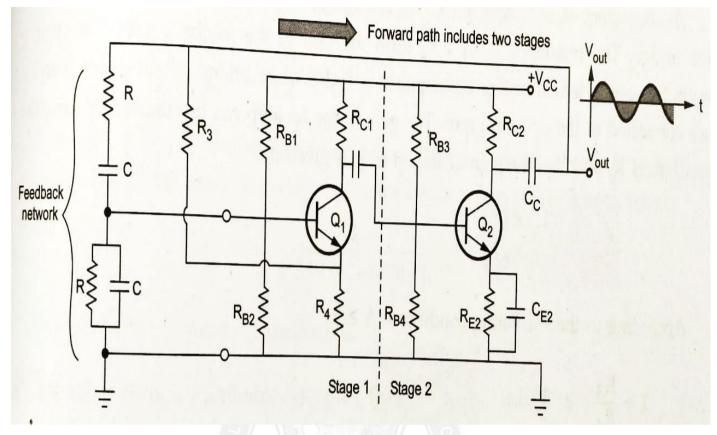
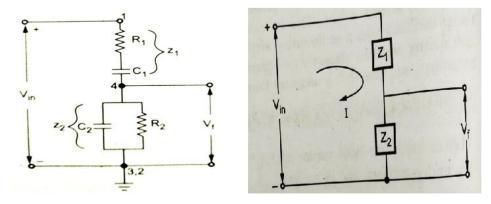



Figure: 2.3.1 wien bridge oscillator

[Source: Microelectronics by J. Millman and A. Grabel, Page-388]

- To reduce the gain, the negative feedback is used without by passing the resistance R_4 .
- The amplitude stability can be improved using a nonlinear resistor for R_4 .
- Increase in the amplitude of the oscillations, increases the current through nonlinear resistance, which results into an increase in the value of non linear resistance R₄.

Derivation of wien bridge oscillator

Figure: 2.3.2 feedback network of wien bridge oscillator [Source: Microelectronics by J. Millman and A. Grabel, Page-389]

• From figure 2.3.2

$${}_{1} = R_{1} + \frac{1}{j\omega C_{1}} = \frac{1 + j\omega R_{1}C_{1}}{j\omega C_{1}}$$
$${}_{2} = R_{2} || \frac{1}{j\omega C_{2}} = \frac{R_{2}}{1 + j\omega R_{2}C_{2}}$$

Replaing $j\omega = s$,

$$_{1} = \frac{1 + sR_{1}C_{1}}{sC_{1}}$$
$$_{2} = \frac{R_{2}}{1 + sR_{2}C_{2}}$$
$$I = \frac{V_{in}}{1 + 2}$$

And $V_f = IZ_2$

$$V_f = \frac{V_{in \ 2}}{1 + 2}$$
$$\beta = \frac{V_f}{V_{in}} = \frac{2}{1 + 2}$$

• Substituting the value of Z_1 and Z_2

$$\beta = \frac{\frac{R_2}{1+sR_2C_2}}{\frac{1+sR_1C_1}{sC_1} + \frac{R_2}{1+sR_2C_2}}$$

• Replacing s by j ω , $s^2 = -\omega^2$ and rationalizing simplifying the expression

$$\beta = \frac{\omega^2 C_1 R_2 (R_1 C_1 + R_2 C_2 + C_1 R_2) + j \omega C_1 R_2 (1 - \omega^2 R_1 R_2 C_1 C_2)}{(1 - \omega^2 R_1 R_2 C_1 C_2)^2 + \omega^2 (R_1 C_1 + R_2 C_2 + C_1 R_2)^2}$$

• To have zero phase shift of the feedback network, its imaginary part must be zero

$$\omega C_1 R_2 (1 - \omega^2 R_1 R_2 C_1 C_2) = 0$$

$$\omega^2 = \frac{1}{R_1 R_2 C_1 C_2}$$

$$\omega = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

$$f = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}}$$

- This is the frequency of the oscillator and it shows that the components of the frequency sensitive arms are the deciding factors for the frequency.
- In practice $R_1 = R_2 = R$ and $C_1 = C_2 = C$

$$=\frac{1}{2\pi RC}; \omega = \frac{1}{RC}$$

$$\beta = \frac{1}{3}$$

• The positive sign of β indicates that the phase shift by the feedback network is 0^0

$$|A\beta| \ge 1$$
$$|A| \ge \frac{1}{|\beta|} \ge \frac{1}{\frac{1}{3}}$$
$$|A| \ge 3$$

- This the required gain of the amplifier stage without any phase shift.
- If $R_1 \neq R_2$ and $C_1 \neq C_2$ then

$$= \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$$
$$\beta = \frac{C_1R_2}{R_1C_1 + R_2C_2 + C_1R_2}$$
$$A \ge \frac{R_1C_1 + R_2C_2 + C_1R_2}{C_1R_2}$$

Advantages:

- 1. Mounting the two capacitors on common shaft and varying their values, the frequency can be varied as per the requirement.
- 2. The stability high
- 3. The frequency range can be selected simply by using decade resistance box
- 4. High gain