24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT IV - SERIALIZATION AND DESERIALIZATION

Reading and writing objects using Serialization:

v' In Java, serialization is the process of converting an object's state into a byte
stream, while deserialization is the reverse process of recreating the object from
that byte stream.

v' This is commonly used to save and retrieve objects from files, send them over
a network, or transfer them between systems.

Serialization De-Serialization

ByteStream

ByteStream

Database

Steps for reading and writing objects using serialization
1. Implement the Serializable interface:
v The class of any object you want to serialize must implement

the java.io.Serializable interface.

v' Serializable is a marker interface, meaning it has no methods to
implement. It simply marks the class as eligible for serialization.

v' If a superclass is serializable, all its subclasses are automatically serializable
as well.

2. Define a serialVersionUID

v' Add a private static final long serialVersionUID field to your class.

v' This version number is used to verify that the sender and receiver of a
serialized object have compatible class definitions.

v If you <change vyour class and the serialVersionUID is different,

a java.io.InvalidClassException is thrown during deserialization.

3. Mark fields as transient

v' Use the transient keyword to exclude specific fields from the serialization
process.
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

v' This is useful for sensitive data (like passwords) or temporary fields that do
not need to be saved to the file.

v/ Static fields are not part of an object's state, so they are not serialized by
default. The transient keyword has no effect on them.

Example:
import java.io.*;
class Student implements Serializable
{
String name;
int age;
Student(String name, int age)
{
this.name = name;
this.age = age;
b
b
public class SerializeDemo
{
public static void main(String[] args)
{
try // SERIALIZATION (Writing object to file)
{
Student s1 = new Student("John", 1);
FileOutputStream fos = new FileOutputStream("student.ser");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(s1); // Write object
oos.close();
fos.close();
System.out.printin("Object serialized and saved to student.ser");

b
catch (Exception e)
{
System.out.printin(e);
b
try // DESERIALIZATION (Reading object from file)
{

FileInputStream fis = new FileInputStream("student.ser");
ObjectInputStream ois = new ObjectInputStream(fis);
Student s2 = (Student) ois.readObject(); // Read object
ois.close();

fis.close();

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

System.out.printin("Object deserialized:");
System.out.printin("Name: " + s2.name);
System.out.printin("Age: " + s2.age);

¥

catch (Exception e)

{

System.out.printin(e);
¥
¥
¥
OUTPUT:

-~ : - -

¥ Command Prompt

D:\SAN> javac SerializeDemo. java

D:\NSAN> java SerializeDemo
bject serialized and saved to student.

Ob ject deserialized:
Mame: John

Age:

D:NSAN>R

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

	UNIT IV – SERIALIZATION AND DESERIALIZATION
	Reading and writing objects using Serialization:
	Steps for reading and writing objects using serialization
	2. Define a serialVersionUID
	3. Mark fields as transient
	Example:
	import java.io.*;
	class Student implements Serializable
	{
	String name;
	int age;
	Student(String name, int age)
	{ (1)
	this.name = name;
	this.age = age;
	}
	} (1)
	public class SerializeDemo
	{ (2)
	public static void main(String[] args)
	{ (3)
	try // SERIALIZATION (Writing object to file)
	{ (4)
	Student s1 = new Student("John", 1);
	FileOutputStream fos = new FileOutputStream("student.ser");
	ObjectOutputStream oos = new ObjectOutputStream(fos);
	oos.writeObject(s1); // Write object
	oos.close();
	fos.close();
	System.out.println("Object serialized and saved to student.ser");
	} (2)
	catch (Exception e)
	{ (5)
	System.out.println(e);
	} (3)
	try // DESERIALIZATION (Reading object from file)
	{ (6)
	FileInputStream fis = new FileInputStream("student.ser");
	ObjectInputStream ois = new ObjectInputStream(fis);
	Student s2 = (Student) ois.readObject(); // Read object
	ois.close();
	fis.close();
	System.out.println("Object deserialized:");
	System.out.println("Name: " + s2.name);
	System.out.println("Age: " + s2.age);
	} (4)
	catch (Exception e) (1)
	{ (7)
	System.out.println(e); (1)
	} (5)
	} (6)
	} (7)
	OUTPUT:

