
24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT IV – SERIALIZATION AND DESERIALIZATION

Reading and writing objects using Serialization:

 In Java, serialization is the process of converting an object's state into a byte

stream, while deserialization is the reverse process of recreating the object from

that byte stream.

 This is commonly used to save and retrieve objects from files, send them over

a network, or transfer them between systems.

Steps for reading and writing objects using serialization

1. Implement the Serializable interface:

 The class of any object you want to serialize must implement

 the java.io.Serializable interface.

 Serializable is a marker interface, meaning it has no methods to

implement. It simply marks the class as eligible for serialization.

 If a superclass is serializable, all its subclasses are automatically serializable

as well.

2. Define a serialVersionUID

 Add a private static final long serialVersionUID field to your class.

 This version number is used to verify that the sender and receiver of a

serialized object have compatible class definitions.

 If you change your class and the serialVersionUID is different,

 a java.io.InvalidClassException is thrown during deserialization.

3. Mark fields as transient

 Use the transient keyword to exclude specific fields from the serialization

process.

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 This is useful for sensitive data (like passwords) or temporary fields that do

not need to be saved to the file.

 Static fields are not part of an object's state, so they are not serialized by

default. The transient keyword has no effect on them.

Example:

import java.io.*;

class Student implements Serializable

{

 String name;

 int age;

 Student(String name, int age)

 {

 this.name = name;

 this.age = age;

 }

}

public class SerializeDemo

{

 public static void main(String[] args)

 {

 try // SERIALIZATION (Writing object to file)

{

 Student s1 = new Student("John", 1);

 FileOutputStream fos = new FileOutputStream("student.ser");

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(s1); // Write object

 oos.close();

 fos.close();

 System.out.println("Object serialized and saved to student.ser");

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 try // DESERIALIZATION (Reading object from file)

 {

 FileInputStream fis = new FileInputStream("student.ser");

 ObjectInputStream ois = new ObjectInputStream(fis);

 Student s2 = (Student) ois.readObject(); // Read object

 ois.close();

 fis.close();

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 System.out.println("Object deserialized:");

 System.out.println("Name: " + s2.name);

 System.out.println("Age: " + s2.age);

 }

 catch (Exception e)

{

 System.out.println(e);

 }

 }

}

OUTPUT:

	UNIT IV – SERIALIZATION AND DESERIALIZATION
	Reading and writing objects using Serialization:
	Steps for reading and writing objects using serialization
	2. Define a serialVersionUID
	3. Mark fields as transient
	Example:
	import java.io.*;
	class Student implements Serializable
	{
	String name;
	int age;
	Student(String name, int age)
	{ (1)
	this.name = name;
	this.age = age;
	}
	} (1)
	public class SerializeDemo
	{ (2)
	public static void main(String[] args)
	{ (3)
	try // SERIALIZATION (Writing object to file)
	{ (4)
	Student s1 = new Student("John", 1);
	FileOutputStream fos = new FileOutputStream("student.ser");
	ObjectOutputStream oos = new ObjectOutputStream(fos);
	oos.writeObject(s1); // Write object
	oos.close();
	fos.close();
	System.out.println("Object serialized and saved to student.ser");
	} (2)
	catch (Exception e)
	{ (5)
	System.out.println(e);
	} (3)
	try // DESERIALIZATION (Reading object from file)
	{ (6)
	FileInputStream fis = new FileInputStream("student.ser");
	ObjectInputStream ois = new ObjectInputStream(fis);
	Student s2 = (Student) ois.readObject(); // Read object
	ois.close();
	fis.close();
	System.out.println("Object deserialized:");
	System.out.println("Name: " + s2.name);
	System.out.println("Age: " + s2.age);
	} (4)
	catch (Exception e) (1)
	{ (7)
	System.out.println(e); (1)
	} (5)
	} (6)
	} (7)
	OUTPUT:

