
24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

1.3. TOKENS

Tokens are the smallest individual units (building blocks) of a C++

program that the compiler recognizes. Every C++ program is made up of

tokens.

Types of tokens:

C++ tokens are classified into six main categories:

1. Keywords

2. Identifiers

3. Constants

4. Strings

5. Operators

6. Punctuation / Special symbols

1.3.1 Keywords

 Keywords are reserved words in C++ that have specific,

predefined meanings and purposes within the language.

 Because they serve special roles in the compiler’s interpretation,

keywords cannot be used as variable names, identifiers, or

function names in a program.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

 Common examples of C++ keywords include int, float, char, if,

else, for, while, class, public, private, return, and switch.

1.3.2 Identifiers

 Identifiers are names given by the programmer to variables,

functions, classes, objects, arrays, etc.

 Must follow rules:

o Can contain letters, digits, and underscore.

o No special characters except _

o Cannot start with a digit

o Cannot be a keyword

o Case-sensitive

 Examples: total, marks, Student1, sum_of_numbers

1.3.3 Constants (Literals)

 Constants are fixed values that do not change during program

execution.

Types:

 Integer constants, such as 10 or −5, which represent whole

numbers.

 Floating-point constants, such as 3.14 or 0.005, which

represent real numbers with decimal points.

 Character constants, such as 'A' or '5', which are enclosed in

single quotes and represent a single character.

 String constants, such as "Hello", which consist of a sequence

of characters enclosed in double quotes.

 Boolean constants, such as true and false, which represent

logical truth values.

1.3.4 Strings

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

 A string is a sequence of characters enclosed in double quotes,

used to represent text in C++.

 For example, "C++ Programming" is a valid string.

 In memory, every string is automatically terminated with a null

character ('\0'), which indicates the end of the string.

1.3.5 Operators

Operators are special symbols that perform specific operations on

variables and constants. They allow manipulation of data and form

expressions in C++.

Types:

 Arithmetic operators: +, -, *, /, % used for mathematical

operations.

 Relational operators: ==, !=, >, <, >=, <=

 Logical operators: &&, ||, !

 Assignment operators: =, +=, -=, *=, /=

 Increment/Decrement: ++, --

 Ternary operator: ? :

1.3.6 Punctuation / Special Symbols

Punctuation marks and special symbols are used to structure C++

programs and define the syntax of the language.

Examples:

 { } which define a block of code, typically used in functions, loops,

and conditional statements.

 () which are used for function parameters and grouping

expressions.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

 [] which denote array subscripts and are used to access array

elements.

 ; which acts as a statement terminator, marking the end of a

command.

 , which is used as a separator for multiple variables or function

arguments.

 : which may be used for labels, the conditional operator, or

public/private specifiers in classes.

 # which denotes a pre-processor directive, such as #include or

#define.

Example :

 int sum = a + b;

Tokens in this statement:

 int → Keyword

 sum → Identifier

 = → Operator

 a → Identifier

 + → Operator

 b → Identifier

 ; → Special symbol

1.4. EXPRESSIONS

An expression is a combination of variables, constants, and

operators that produces a value.

1.4.1 Arithmetic Expressions

 Arithmetic expressions use arithmetic operators such as +, −, *, /,

and % to perform mathematical calculations.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

 Example:

a + b * 2,

x % 10

1.4.2 Relational Expressions

 Relational expressions are used to compare two values, and they

always produce a result that is either true (1) or false (0).

 Example:

a > b, x == y

1.4.3 Logical Expressions

 Logical expressions combine two or more relational expressions

using logical operators

 Operators such as && (AND), || (OR), ! (NOT)

 Example:

(a > b) && (x < y)

 where the final result depends on the truth values of the

combined conditions.

1.4.4 Assignment Expressions

 Assignment expressions are used to assign values to variables

using the assignment operator or compound assignment operators.

 Examples:

x = 10

a += 5 (same as a = a + 5)

1.5 CONTROL STRUCTURES IN C++

 Control structures determine how the flow of execution proceeds

in a C++ program.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

 They allow the programmer to control decision-making,

repetition, and jumps in program flow.

 Control structures make programs logical, efficient, and

modular.

C++ provides three main categories:

1. Decision-Making Statements

2. Looping Statements

3. Jump Statements

Each category is explained below with definitions, features, syntax,

and examples.

1.5.1 Decision-Making Statements

Decision-making statements allow the program to choose between

different actions based on a condition.

 Decision-making statements are used for conditional execution,

allowing a program to choose whether a specific block of code

should run or not.

 The conditions used in these statements are usually relational or

logical expressions that compare values or evaluate logical

relationships.

 These conditions always produce a result of either true (1) or

false (0), which determines the flow of execution.

 They help implement logical decisions in real-world

situations, enabling programs to react differently based on varying

inputs or conditions.

Types of Decision-Making Statements

1. if Statement

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

2. if–else Statement

3. Nested if–else

4. switch Statement

1. if Statement

The if statement executes a block of code only when the

specified condition evaluates to true.

Features

 It is the simplest form of decision-making control in C++.

 It does not provide an alternative block, meaning the

statements inside it run only if the condition is true.

 It is primarily used for testing a single condition before executing

an action.

Syntax

if (condition)
{

 statements;
}

Example

if (marks >= 50)
{

 cout << "Pass";
}

 If the condition evaluates to false, the entire block of statements

inside the if statement is simply skipped.

 It is most useful for simple checks or validations, such as testing

user input, checking limits, or verifying conditions before execution.

2. if–else Statement

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

The if–else statement executes one block of code when the

condition is true and executes a different block when the condition is

false.

Features

 It provides two-way decision control, allowing the program to

choose between two possible sets of actions.

 It ensures that one of the two blocks always executes,

regardless of the condition.

Syntax

if (condition)

{
 true-block;

}
else

{

 false-block;
}

Example

if (mark >= 50)

{
 cout << "Pass";

}
else

{
 cout << "Fail";

}

 The if–else structure is particularly useful in binary choice

situations, such as yes/no decisions, pass/fail conditions, or

true/false outcomes.

3. Nested if–else

A nested if–else occurs when an if or else block contains another

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

if–else statement inside it. This creates a multi-level decision structure,

allowing more complex decision-making.

Example

if (Mark >= 50)

 cout << "Pass";

else if (Mark < 50)

 cout << "Fail";

else

 cout << "Absent";

 Nested if–else statements are used when multiple conditions

must be checked in sequence.

 They work well for tasks like assigning grades, categorizing values,

or making multi-stage decisions.

4. switch Statement

Switch Statement is used when there are multiple possible

choices for a variable or expression.

 The switch statement replaces long else-if ladders, making the

program easier to read and maintain when multiple conditions

depend on the same variable.

 It supports only integral data types, such as int, char, and

enum, for its expression and case labels.

 The switch statement uses case labels to match specific values,

and the break statement is required to stop fall-through and

prevent execution from continuing into the next case.

Syntax

switch(expression)

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

{

 case value1:

 statements;

 break;

 case value2:

 statements;

 break;

 default:

 statements;

}

Example

int day = 3;

switch(day)

{

 case 1:

 cout << "Monday";

 break;

 case 2:

cout << "Tuesday";

break;

 case 3:

cout << "Wednesday";

break;

 default:

 cout << "Invalid day";

}

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 11

 The break statement is required to prevent the execution of

the next case, ensuring that the program exits the switch block

once the matching case has been executed.

 The default case is optional but recommended, as it handles

unexpected or unmatched values and provides a safe fallback in the

switch structure.

1.5.2. Looping (Iterative) Statements

 Looping statements execute a block of code repeatedly until a

specified condition becomes false, allowing a program to

perform repeated actions efficiently.

 They help reduce code repetition by avoiding the need to write

the same statements multiple times.

Looping structures are commonly used for tasks such as

counting, summing values, and searching through data.

 Every loop generally consists of three main parts: initialization,

where the loop control variable is set; condition checking, which

determines whether the loop should continue; and an update step

(increment or decrement), which modifies the control variable

during each iteration.

 Loop consists of:

 Initialization

 Condition checking

 Update (increment/decrement)

1. Looping Statements

 Looping statements in C++ are used to execute a block of code

repeatedly as long as a specified condition remains true.

 They help reduce code repetition and are commonly used for

counting, summing, searching, or processing arrays.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 12

i) for Loop

The for loop is used when the number of iterations is known in

advance, making it ideal for count-controlled loops.

Syntax

 for (initialization; condition; update)

 {

 statements;

 }

Example: Print numbers 1 to 5

 for(int i = 1; i <= 5; i++)

 {

 cout << i << " ";

 }

 All loop control elements such as initialization, condition, and

update—are written in a single line.

 Preferred for count-controlled loops, where the exact number of

repetitions is known beforehand.

ii) while Loop

The while loop checks the condition first and then executes the

block. It is used when the number of iterations is not known

beforehand.

Syntax

while (condition)

 {

 statements;

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 13

}

Example

 int i = 1;

 while(i <= 5)

 {

 cout << i << " ";

 i++;

 }

 If the condition is false initially, the loop will not execute even

once.

 Useful for condition-controlled loops where the number of

repetitions depends on dynamic data.

iii) do–while Loop

The do–while loop executes the block at least once because the

condition is checked after the block.

Syntax

do

{

 statements;

} while(condition);

Example

 int i = 1;

 do

 {

 cout << i << " ";

 i++;

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 14

 } while(i <= 5);

When to Use

 Creating menus in console programs

 Loops that depend on user input

 Validation tasks where the code must run at least once

1.5.3. Jump Statements

Jump statements provide an unconditional change in the flow of

execution in a program. They are often used to control loops or exit

blocks early.

a) break

Definition

The break statement terminates the nearest enclosing loop or

switch block immediately.

Example

 for(int i = 1; i <= 10; i++)

 {

 if(i == 5) break;

 cout << i << " ";

 }

 Prevents infinite loops.

 Can only be used inside loops or switch statements.

b) continue

The continue statement skips the current iteration of a loop

and moves to the next cycle.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 15

Example

for(int i = 1; i <= 5; i++)

 {

 if(i == 3) continue;

 cout << i << " ";

}

 Useful when you want to skip specific values or conditions

without terminating the loop.

c) goto

The goto statement transfers control unconditionally to a

labelled statement elsewhere in the program.

Syntax

 goto label;

 // some statements

 label:

 statements;

Example

 int i = 1;

 start:

 cout << i << " ";

 i++;

 if(i <= 5) goto start;

 Not recommended in modern C++ programming because it can

make the code hard to read and debug.

 Prefer structured loops over goto for clarity and maintainability.

