1.3. TOKENS

24CS402- DATA STRUCTURES USING C++

Tokens are the smallest individual units (building blocks) of a C++

program that the compiler recognizes. Every C++ program is made up of

tokens.

Types of tokens:

C++ tokens are classified into six main categories:

A

Strings

Keywords
Identifiers
Constants

Operators
Punctuation / Special symbols

C++ Tokens

Keywords I l Constants | | Strings

int
char
if
while

15 “Hello”
0.26 “Hai”
-22

| Identifiers |

marks
amount

1.3.1 Keywords

| Operators |

4+
*

++

Special
Symbols

[]
()

v Keywords are reserved words in C++ that have specific,

predefined meanings and purposes within the language.

v' Because they serve special roles in the compiler’s interpretation,

keywords cannot be used as variable names, identifiers, or

function names in a program.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS402- DATA STRUCTURES USING C++

v' Common examples of C++ keywords include int, float, char, if,

else, for, while, class, public, private, return, and switch.
1.3.2 Identifiers

o Identifiers are names given by the programmer to variables,
functions, classes, objects, arrays, etc.
o Must follow rules:
o Can contain letters, digits, and underscore.
o No special characters except _
o Cannot start with a digit
o Cannot be a keyword
o Case-sensitive

« Examples: total, marks, Studentl, sum_of _numbers
1.3.3 Constants (Literals)

o Constants are fixed values that do not change during program

execution.

Types:

v' Integer constants, such as 10 or —5, which represent whole
numbers.

v Floating-point constants, such as 3.14 or 0.005, which
represent real nhumbers with decimal points.

v Character constants, such as 'A' or '5', which are enclosed in
single quotes and represent a single character.

v' String constants, such as "Hello", which consist of a sequence
of characters enclosed in double quotes.

v Boolean constants, such as true and false, which represent
logical truth values.

1.3.4 Strings

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

v A string is a sequence of characters enclosed in double quotes,
used to represent text in C++.

v For example, "C++ Programming" is a valid string.

v In memory, every string is automatically terminated with a null

character ('\0'), which indicates the end of the string.
1.3.5 Operators

Operators are special symbols that perform specific operations on
variables and constants. They allow manipulation of data and form

expressions in C++.
Types:

Arithmetic operators: +, -, *, /, % used for mathematical

operations.
« Relational operators: ==, I=, >, <, >=, <=

« Logical operators: &&, ||, !

« Assignment operators: =, +=, -=, *=, /=
« Increment/Decrement: ++, --

« Ternary operator: ? :
1.3.6 Punctuation / Special Symbols

Punctuation marks and special symbols are used to structure C++

programs and define the syntax of the language.
Examples:

v { } which define a block of code, typically used in functions, loops,
and conditional statements.
v" () which are used for function parameters and grouping

expressions.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

v [] which denote array subscripts and are used to access array

elements.

v' ; which acts as a statement terminator, marking the end of a
command.

v' , which is used as a separator for multiple variables or function
arguments.

v' : which may be used for labels, the conditional operator, or
public/private specifiers in classes.

v' # which denotes a pre-processor directive, such as #include or
#define.

Example :

int sum =a + b;

Tokens in this statement:

int — Keyword
sum — Identifier
= — Operator
a — Identifier
+ — Operator
b — Identifier

; — Special symbol

1.4. EXPRESSIONS

An expression is a combination of variables, constants, and

operators that produces a value.

1.4.1 Arithmetic Expressions

Arithmetic expressions use arithmetic operators such as +, —, *, /,

and % to perform mathematical calculations.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

o« Example:
a+b*2,
X % 10

1.4.2 Relational Expressions

o Relational expressions are used to compare two values, and they
always produce a result that is either true (1) or false (0).
o« Example:

a>b,x==y
1.4.3 Logical Expressions

o Logical expressions combine two or more relational expressions
using logical operators

e Operators such as && (AND), || (OR), ! (NOT)

o« Example:
(a>b)&& (x <vy)

where the final result depends on the truth values of the

combined conditions.
1.4.4 Assignment Expressions

o Assignment expressions are used to assign values to variables
using the assignment operator or compound assignment operators.
o« Examples:
x =10

a+=5(sameasa=a+5)
1.5 CONTROL STRUCTURES IN C++
v' Control structures determine how the flow of execution proceeds

in a C++ program.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

v They allow the programmer to control decision-making,
repetition, and jumps in program flow.
v' Control structures make programs logical, efficient, and

modaular.
C++ provides three main categories:

1. Decision-Making Statements
2. Looping Statements

3. Jump Statements

Each category is explained below with definitions, features, syntax,

and examples.
1.5.1 Decision-Making Statements

Decision-making statements allow the program to choose between

different actions based on a condition.

v' Decision-making statements are used for conditional execution,
allowing a program to choose whether a specific block of code
should run or not.

v The conditions used in these statements are usually relational or
logical expressions that compare values or evaluate logical
relationships.

v These conditions always produce a result of either true (1) or
false (0), which determines the flow of execution.

v They help implement logical decisions in real-world
situations, enabling programs to react differently based on varying

inputs or conditions.
Types of Decision-Making Statements

1. if Statement

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

2. if-else Statement
3. Nested if-else

4. switch Statement
1. if Statement

The if statement executes a block of code only when the

specified condition evaluates to true.
Features

o Itis the simplest form of decision-making control in C++.

o It does not provide an alternative block, meaning the
statements inside it run only if the condition is true.

o Itis primarily used for testing a single condition before executing

an action.
Syntax

if (condition)

{
by

Example

statements;

if (marks >= 50)
{

cout << "Pass";

by

« If the condition evaluates to false, the entire block of statements
inside the if statement is simply skipped.
o It is most useful for simple checks or validations, such as testing

user input, checking limits, or verifying conditions before execution.

2. if-else Statement

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

24CS402- DATA STRUCTURES USING C++

The if-else statement executes one block of code when the
condition is true and executes a different block when the condition is

false.

Features

o It provides two-way decision control, allowing the program to
choose between two possible sets of actions.
« It ensures that one of the two blocks always executes,

regardless of the condition.

Syntax

if (condition)

{

true-block;

by

else

{

false-block;

by

Example

if (mark >= 50)
{

cout << "Pass";

by

else

{

cout << "Fail";

by

o The if-else structure is particularly useful in binary choice
situations, such as yes/no decisions, pass/fail conditions, or

true/false outcomes.

3. Nested if-else

A nested if-else occurs when an if or else block contains another

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

24CS402- DATA STRUCTURES USING C++

if-else statement inside it. This creates a multi-level decision structure,

allowing more complex decision-making.
Example

if (Mark >= 50)
cout << "Pass";
else if (Mark < 50)
cout << "Fail";
else

cout << "Absent";

» Nested if-else statements are used when multiple conditions
must be checked in sequence.
« They work well for tasks like assigning grades, categorizing values,

or making multi-stage decisions.
4. switch Statement

Switch Statement is used when there are multiple possible

choices for a variable or expression.

v The switch statement replaces long else-if ladders, making the
program easier to read and maintain when multiple conditions
depend on the same variable.

v' It supports only integral data types, such as int, char, and
enum, for its expression and case labels.

v' The switch statement uses case labels to match specific values,
and the break statement is required to stop fall-through and

prevent execution from continuing into the next case.
Syntax

switch(expression)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

24CS402- DATA STRUCTURES USING C++

case valuel:
statements;

break;

case value?2:
statements;

break;

default:

statements;

Example

int day = 3;
switch(day)
{
case 1:
cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
default:

cout << "Invalid day";

- ___|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

24CS402- DATA STRUCTURES USING C++

v The break statement is required to prevent the execution of
the next case, ensuring that the program exits the switch block
once the matching case has been executed.

v The default case is optional but recommended, as it handles
unexpected or unmatched values and provides a safe fallback in the

switch structure.
1.5.2. Looping (Iterative) Statements

v' Looping statements execute a block of code repeatedly until a
specified condition becomes false, allowing a program to
perform repeated actions efficiently.

v They help reduce code repetition by avoiding the need to write
the same statements multiple times.

Looping structures are commonly used for tasks such as
counting, summing values, and searching through data.

v' Every loop generally consists of three main parts: initialization,
where the loop control variable is set; condition checking, which
determines whether the loop should continue; and an update step
(increment or decrement), which modifies the control variable

during each iteration.

v" Loop consists of:

. Initialization
. Condition checking
. Update (increment/decrement)

1. Looping Statements

v' Looping statements in C++ are used to execute a block of code
repeatedly as long as a specified condition remains true.
v' They help reduce code repetition and are commonly used for

counting, summing, searching, or processing arrays.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 11

24CS402- DATA STRUCTURES USING C++
i) for Loop

The for loop is used when the number of iterations is known in

advance, making it ideal for count-controlled loops.

Syntax

for (initialization; condition; update)
{

statements;

Example: Print numbers 1 to 5

for(inti=1;i<=5; i++)
{

cout <<i<<"";

« All loop control elements such as initialization, condition, and

update—are written in a single line.

o Preferred for count-controlled loops, where the exact number of

repetitions is known beforehand.
i) while Loop

The while loop checks the condition first and then executes the

block. It is used when the number of iterations is not known
beforehand.

Syntax

while (condition)

{

statements;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 12

24CS402- DATA STRUCTURES USING C++

b
Example

inti=1;

while(i <= 5)

{
cout << i<< "™
i++;

¥

« If the condition is false initially, the loop will not execute even
once.

« Useful for condition-controlled loops where the number of
repetitions depends on dynamic data.

iili) do—while Loop

The do—while loop executes the block at least once because the
condition is checked after the block.

Syntax

do
{
statements;

+ while(condition);
Example

inti =1;
do
{
cout << i<< "™
i++;
I ——

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 13

24CS402- DATA STRUCTURES USING C++

} while(i <= 5);
When to Use

o Creating menus in console programs
o Loops that depend on user input

« Validation tasks where the code must run at least once
1.5.3. Jump Statements

Jump statements provide an unconditional change in the flow of
execution in a program. They are often used to control loops or exit
blocks early.

a) break
Definition

The break statement terminates the nearest enclosing loop or

switch block immediately.
Example

for(inti=1;i<=10; i++)
{
if(i == 5) break;

cout <<i<<""™;

o Prevents infinite loops.

o Can only be used inside loops or switch statements.
b) continue

The continue statement skips the current iteration of a loop
and moves to the next cycle.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 14

24CS402- DATA STRUCTURES USING C++

Example

for(inti=1;i<=5; i++)
{

if(i == 3) continue;

cout <<i<<"";

o Useful when you want to skip specific values or conditions

without terminating the loop.

c) goto

The goto statement transfers control unconditionally to a

labelled statement elsewhere in the program.

Syntax

goto label;

// some statements

label:
statements;
Example
inti =1;
start:

cout <<i<< "™
i++;

if(i <= 5) goto start;

o Not recommended in modern C++ programming because it can
make the code hard to read and debug.

« Prefer structured loops over goto for clarity and maintainability.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 15

