24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT V — COLLECTIONS FRAMEWORK
Collection overview — Recent changes to collection - Collection interface — Collection

classes — Working with maps —Collection algorithms - The legacy classes and interfaces.
Applet class: Types — Basics — Architecture — Skeleton — Display methods — repainting —
Status window — HTML applet tag — Passing parameter - Creating a swing applet -
Painting in swing - A paint example, Exploring swing

Working with maps
A map is an object that stores associations between keys and values, or key/value pairs.
Given a key, you can find its value. Both keys and values are objects. The keys must be
unique, but the values may be duplicated. Some maps can accept a null key and null
values, others cannot. There is one key point about maps that is important to mention at
the outset: they don’t implement the Iterable interface. This means that you cannot cycle
through a map using a for-each style for loop. Furthermore, you can’t obtain an iterator to
a map. However, as you will soon see, you can obtain a collection-view of a map, which
does allow the use of either the for loop or an iterator.
The Map Interfaces

Because the map interfaces define the character and nature of maps, this
discussion of maps begins with them. The following interfaces support maps:

Interface Description
Map Maps unique keys to values.
Map.Entry Describes an element (a key,/value pair) in a map. This is an inner class of Map.

MNavigableMap |Extends SortedMap to handle the retrieval of entries based on closest-match
searches. (Added by Java 5E 6.)

SortedMap Extends Map so that the keys are maintained in ascending order.

The Map Interface

The Map interface maps unique keys to values. A key is an object that you use to
retrieve a value at a later date. Given a key and a value, you can store the value in a Map
object. After the value is stored, you can retrieve it by using its key. Map is generic and is
declared as shown here:

interface Map<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by Map are summarized in Table.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Meathod
vold clean)

boolean containsKey(Object k)

boolean containsValue{Object v)

Set<Map Entry<K, V== entrySet|)

boolean equals|Object obyj)

V get{Object k)

it hashCode{)
boolean isEmpty| |

Set<K> keySet|)

Vputik £ ¥V v

Description

Removes all key,/value pairs from the invoking map.

Returns true if the invoking map contains k as a key. Otherwise,
returns false.

Returns true if the map contains v as a value. Otherwise, returns false.

Returns a Set that contains the entries in the map. The set contains
objects of type Map.Entry. Thus, this method provides a setview of the

invoking map.

Feturns true if oby is 2 Map and contains the same entries. Otherwise,

returns false,

Returns the value associated with the key k. Returns null if the key s
not found.

Heturns the hash code for the maoaking map.
Returns true if the invoking map is empty. Otherwise, returns false

Returns a Set that contains the keys in the invoking map. This method
provides a setwiew of the keys in the nvoking map.

Puts an entry in the invoking map, overwriting any previous value

associated with the kKey. The key and value arée K and i, réspectively.
Returns null if the key did not already exist. Otherwise, the previous
value linked to the key is returned.

vold putAliiMap<? extends K. Puts all the entries from m into this map.

7 extends V> m)
W remove|{Object k) Removes the entry whose key equals k
Returns the number of keyvalue pairs in the map.

Returns a collection containing the values in the map. This method
provides a collection-view of the values in the map.

int size)

Collection<V=> values| |

Several methods throw a ClassCastException when an object is incompatible with
the elements in a map. A NullPointerException is thrown if an attempt is made to use a
null object and null is not allowed in the map. An UnsupportedOperationException is
thrown when an attempt is made to change an unmodifiable map. An
[llegal ArgumentException is thrown if an invalid argument is used.

Maps revolve around two basic operations: get() and put(). To put a value into a
map, use put(), specifying the key and the value. To obtain a value, call get(), passing
the key as an argument. The value is returned. As mentioned earlier, although part of the
Collections Framework, maps are not, themselves, collections because they do not
implement the Collection interface. However, you can obtain a collection-view of a map.
To do this, you can use the entrySet() method. It returns a Set that contains the elements
in the map. To obtain a collection-view of the keys, use keySet(). To get a
collection-view of the values, use values(). Collection-views are the means by which
maps are integrated into the larger Collections Framework.

The SortedMap Interface
The SortedMap interface extends Map. It ensures that the entries are maintained in

ascending order based on the keys. SortedMap is generic and is declared as shown here:

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

interface SortedMap<K, V>
Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by SortedMap are summarized in Table.

Method

Description

Comparator=? super K= comparator()

Returns the invoking sorted map's comparator. If natural
ordering is used for the invoking map, null is returned.

K firstKey()
SortedMap=K, V= headMap(K end)

K lastKey()

Returns the first key in the invoking map.

Returns a sorted map for those map entries with keys that are

less than end.

Returns the last key in the invoking map.

SortedMap<K, V= subMap(K start, K end)

SortedMap=K, V= tailMap(K start)

Returns a map containing those entries with keys that are

greater than or equal to start and less than end.

Returns a map containing those entries with keys that are
greater than or equal to start.

The NavigableMap Interface

The NavigableMap interface was added by Java SE 6. It extends SortedMap and
declares the behavior of a map that supports the retrieval of entries based on the closest
match to a given key or keys. NavigableMap is a generic interface that has this

declaration:

interface NavigableMap<K,V>

Here, K specifies the type of the keys, and V specifies the type of the values associated
with the keys. In addition to the methods that it inherits from SortedMap, NavigableMap

adds those summarized in Table.

Method
Map. Entry<K.V> ceilingEntry(l oby)

K ceilingkeviK obyj)

Description

Searches the map for the smallest key k such that k == obi. If such a key

is found, its entry is returned. Otherwise, null is returmed.

Searches the map for the smallest key &k such that k == obj. If such a key
is found, it is returned. Otherwise, null is returned.

MavigableSet<K= descendingieySet])

Returns a NavigableSet that contains the keys in the invoking map in
reverse order. Thus, it returns a reverse setview of the keys. The
resulting set is backed by the map.

MavigableMap-<K_V= descendingMap)

Map. Entry<K V> firstEntry] |

Map. Entry<K. V= floorEntryi K oby)

Returns a NavigableMap that is the reverse of the imoking map. The

resulting map is backed by the invoking map.

Returns the first entry in the map. This is the entry with the least key.

Searches the map for the largest key k such that k <= oby. If such a key

is found, its entry is returned. Otherwise, null is returmed.

K floarkey(K ob)

MavigableMap<K V=
headMap(¥. upperBound, boalean incl)

Map. Entry<K.V= higherEntry(K oby)

Searches the map for the largest key k such that k <= oby. If such a key

is found, it is returned. Otherwise, null is returned.

Returns a NavigableMap that includes all entries from the invoking map
that have keys that are less than upperSound. If incl is true, then an
element equal to upperBound is included. The resulting map is backed by

the imwoking map.

Searches the set for the largest key K such that k = oby. IT such a key is
found, its entry is returned. Otherwise, null is returned.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Several methods throw a ClassCastException when an object is incompatible with the
keys in the map. A NullPointerException is thrown if an attempt is made to use a null
object and null keys are not allowed in the set. An Illegal ArgumentException is thrown if
an invalid argument is used.
The Map.Entry Interface

The Map.Entry interface enables you to work with a map entry. Recall that the
entrySet() method declared by the Map interface returns a Set containing the map
entries. Each of these set elements is a Map.Entry object. Map.Entry is generic and is
declared like this:

interface Map.Entry<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

Method Description

boolean equals(Object oby) | Returns true if obj is a Map.Entry whose key and value are equal to that of the
invoking object.

K getkeyl) Returns the key for this map entry.

V getvalue() Returns the value for this map entry.

int hashCode() IR&Lurns the hash code for this map entry.

V setValue(V v - Sets the value for this map entry to v. A ClassCastException is thrown if vis not

the correct type for the map. An llegalArgumentException is thrown if there is
a problem with v A NullPointerException is thrown if v is null and the map does
not permit null keys. An UnsupportedOperationException is thrown if the map
cannot be changed.

The Map Classes
Several classes provide implementations of the map interfaces. The classes that
can be used for maps are summarized here:

Class Description

AbstractMap jlmplements most of the Map interface.
EnumMap Extends AbstractMap for use with enum keys.
HashMap -Extends AbstractMap to use a hash table.
TreeMap :Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap Extends HashMap to allow insertion-order iterations.

IdentityHashMap |Extends AbstractMap and uses reference equality when comparing documents.

Notice that AbstractMap is a superclass for all concrete map implementations.
WeakHashMap implements a map that uses “weak keys,” which allows an element in a
map to be garbage-collected when its key is otherwise unused.

The HashMap Class

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

The HashMap class extends AbstractMap and implements the Map interface. It
uses a hash table to store the map. This allows the execution time of get() and put() to
remain constant even for large sets. HashMap is a generic class that has this declaration:

class HashMap<K, V>
Here, K specifies the type of keys, and V specifies the type of values.
The following constructors are defined:

HashMap()

HashMap(Map<? extends K, ? extends V> m)

HashMap(int capacity)

HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by
using the elements of m. The third form initializes the capacity of the hash map to
capacity. The fourth form initializes both the capacity and fill ratio of the hash map by
using its arguments.

The meaning of capacity and fill ratio is the same as for HashSet, described earlier. The
default capacity is 16. The default fill ratio is 0.75.

HashMap implements Map and extends AbstractMap. It does not add any methods
of its own. You should note that a hash map does not guarantee the order of its elements.
Therefore, the order in which elements are added to a hash map is not necessarily the
order in which they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances. Notice
how a set-view is obtained and used.

import java.util.*;

class HashMapDemo

{

public static void main(String args|[])

{
HashMap<String, Double> hm = new HashMap<String, Double>();
hm.put("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Tod Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));
Set<Map.Entry<String, Double>> set = hm.entrySet();
for(Map.Entry<String, Double> me : set)

{
System.out.print(me.getKey() + ": ");

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

System.out.println(me.getValue());
b
System.out.println();
double balance = hm.get("John Doe");
hm.put("John Doe", balance + 1000);
System.out.println("John Doe's new balance: " + hm.get("John Doe"));

}

Output from this program is shown here (the precise order may vary):
Ralph Smith: -19.08
Tom Smith: 123.22
John Doe: 3434.34
Tod Hall: 99.22
Jane Baker: 1378.0
John Doe’s new balance: 4434.34
The TreeMap Class

The TreeMap class extends AbstractMap and implements the NavigableMap
interface. It creates maps stored in a tree structure. A TreeMap provides an efficient
means of storing key/value pairs in sorted order and allows rapid retrieval. You should
note that, unlike a hash map, a tree map guarantees that its elements will be sorted in
ascending key order.
TreeMap is a generic class that has this declaration:

class TreeMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The following TreeMap constructors are defined:

TreeMap()

TreeMap(Comparator<? super K> comp)

TreeMap(Map<? extends K, ? extends V> m)

TreeMap(SortedMap<K, ? extends V> sm)
The first form constructs an empty tree map that will be sorted by using the natural order
of its keys. The second form constructs an empty tree-based map that will be sorted by
using the Comparator comp. (Comparators are discussed later in this chapter.) The third
form initializes a tree map with the entries from m, which will be sorted by using the
natural order of the keys. The fourth form initializes a tree map with the entries from sm,
which will be sorted in the same order as sm.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

TreeMap has no methods beyond those specified by the NavigableMap interface
and the AbstractMap class. The following program reworks the preceding example so
that it uses TreeMap:
import java.util.*;
class TreeMapDemo

{

public static void main(String args|[])
{
TreeMap<String, Double> tm = new TreeMap<String, Double>();
tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Tod Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));
Set<Map.Entry<String, Double>> set = tm.entrySet();
for(Map.Entry<String, Double> me : set)
{
System.out.print(me.getKey() +": ");
System.out.println(me.getValue());
}
System.out.println();
double balance = tm.get("John Doe");
tm.put("John Doe", balance + 1000);
System.out.println("John Doe's new balance: " + tm.get("John Doe"));

}

The following is the output from this program:
Jane Baker: 1378.0
John Doe: 3434.34
Ralph Smith: -19.08
Todd Hall: 99.22
Tom Smith: 123.22
John Doe’s current balance: 4434.34
The LinkedHashMap Class
LinkedHashMap extends HashMap. It maintains a linked list of the entries in the
map, in the order in which they were inserted. This allows insertion-order iteration over
the map. That is, when iterating through a collection-view of a LinkedHashMap, the

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

elements will be returned in the order in which they were inserted. You can also create a
LinkedHashMap that returns its elements in the order in which they were last accessed.
LinkedHashMap is a generic class that has this declaration:
class LinkedHashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
LinkedHashMap defines the following constructors:

LinkedHashMap()

LinkedHashMap(Map<? extends K, ? extends V> m)

LinkedHashMap(int capacity)

LinkedHashMap(int capacity, float fillRatio)

LinkedHashMap(int capacity, float fillRatio, boolean Order)
The first form constructs a default LinkedHashMap. The second form initializes the
LinkedHashMap with the elements from m. The third form initializes the capacity. The
fourth form initializes both capacity and fill ratio. The meaning of capacity and fill ratio
are the same as for HashMap. The default capacity is 16. The default ratio is 0.75. The
last form allows you to specify whether the elements will be stored in the linked list by
insertion order, or by order of last access. If Order is true, then access order is used. If
Order is false, then insertion order is used. LinkedHashMap adds only one method to
those defined by HashMap. This method is removeEldestEntry() and it is shown here:

protected boolean removeEldestEntry(Map.Entry<K, V> ¢)

This method is called by put() and putAll(). The oldest entry is passed in e. By default,
this method returns false and does nothing. However, if you override this method, then
you can have the LinkedHashMap remove the oldest entry in the map. To do this, have
your override return true. To keep the oldest entry, return false.
The IdentityHashMap Class

IdentityHashMap extends AbstractMap and implements the Map interface. It is
similar to HashMap except that it uses reference equality when comparing elements.
IdentityHashMap is a generic class that has this declaration:

class IdentityHashMap<K, V>

Here, K specifies the type of key, and V specifies the type of value. The API
documentation explicitly states that IdentityHashMap is not for general use.
The EnumMap Class

EnumMap extends AbstractMap and implements Map. It is specifically for use
with keys of an enum type. It is a generic class that has this declaration:

class EnumMap<K extends Enum<K>, V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must
extend Enum<K>, which enforces the requirement that the keys must be of an enum type.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

EnumMap defines the following constructors:

EnumMap(Class<K> kType)

EnumMap(Map<K, ? extends V> m)

EnumMap(EnumMap<K, ? extends V> em)
The first constructor creates an empty EnumMap of type kType. The second creates an
EnumMap map that contains the same entries as m. The third creates an EnumMap
initialized with the values in em. EnumMap defines no methods of its own.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

