UNIT -III

RELATIONAL DATABASE DESIGN AND NORMALIZATION

The process of converting **ER** (**Entity–Relationship**) and **EER** (**Enhanced ER**) diagrams into **Relational Schema** is known as **ER/EER-to-Relational Mapping**. This is essential for implementing a conceptual design into an actual database.

The mapping follows a set of systematic rules.

1. Mapping ER Model to Relational Schema Step 1: Mapping Strong Entities

- Each strong entity becomes a table.
- Attributes become columns.
- **Primary key** of the entity becomes the primary key of the table.

Example

Entity: Student(RollNo, Name, Dept, Age)

Relation:

Student(RollNo PRIMARY KEY, Name, Dept, Age)

Step 2: Mapping Weak Entities

- Weak entity depends on another entity (owner).
- Its table includes:
 - Partial key
 - Primary key of owner entity (as foreign key)
- Composite primary key = owner key + partial key.

Example

Weak Entity: Dependent(DepName) dependent on Employee(EmpID)

Relation:

Step 3: Mapping 1–1 Relationship

Two options:

- 1. Add primary key of one entity as a foreign key in the other.
- 2. Choose the side with **total participation**.

Example

Employee(EmpID, Name, Salary) Locker(LockerID, Location)

1–1 mapping:

Employee (EmpID, Name, Salary, LockerID UNIQUE)

Step 4: Mapping 1-M (One-to-Many) Relationship

Add the primary key of the "one" side as a foreign key on the "many" side.

Example

Dept(DeptID, DeptName) Employee (EmpID, Name, DeptID)

Step 5: Mapping M-N (Many-to-Many) Relationship

- Create **new relation** for the relationship.
- Include:
 - Primary keys of both entities
 - Relationship attributes

Example

Student (RollNo, Name) Course(CourseID, Title) Relationship: Enroll (Grade)

Mapping:

Enroll(RollNo, CourseID, Grade, PRIMARY KEY(RollNo, CourseID), FOREIGN KEY (RollNo) REFERENCES Student, FOREIGN KEY(CourseID) REFERENCES Course)

Step 6: Mapping Multivalued Attributes PTIMIZE OUTSPREAD

- Create a separate table.
- Table contains:
 - Primary key of entity
 - Multivalued attribute

Example

Student has multivalued attribute **Phone**.

Phone (RollNo, PhoneNo, PRIMARY KEY (RollNo, PhoneNo),

24CS304 - DATABASE MANAGEMENTSYSTEMS

FOREIGN KEY (RollNo) REFERENCES Student)

Step 7: Mapping Composite Attributes

- Use simple attributes only.
- Break composite attribute into components. JEERING 41

Example:

Address = (Street, City, Pincode)

Store as:

Student (RollNo, Street, City, Pincode)

2. Mapping EER Model to Relational Schema

EER extends ER with:

- √ Specialization / Generalization
- **✓** Inheritance
- ✓ Category (Union Type)
- √ Aggregation

Mapping Specialization / Generalization

Three Common Approaches

**Approach 1: Top-Down / Superclass-Subclass (One Table per Entity)

- Create a table for the **superclass**.
- Create separate tables for each subclass, including: Primary key of superclass
 - Attributes of subclass

Example

Person(PersonID, Name) Student (PersonID, Course) Teacher(PersonID, Salary)

**Approach 2: Single Table (One Table for Entire Hierarchy)

- Combine superclass and subclass attributes in **one relation**.
- Use **NULL** where attribute is not applicable.

Example

Person(PersonID, Name, Course, Salary)

**Approach 3: Only Subclass Tables

24CS304 - DATABASE MANAGEMENTSYSTEMS

- No table for superclass.
- Each subclass table contains:
 - o All attributes of superclass
 - All attributes of subclass

Mapping Disjoint vs Overlapping Constraints

- **Disjoint (D)**: entity belongs to only one subclass
- Overlapping (O): entity may belong to multiple subclasses
- Total / Partial participation determines if superclass key must appear in subclass.

Mapping Aggregation

Aggregation = relationship between a relationship and an entity.

Mapping:

 Convert the aggregated relationship into a separate relation similar to M–N relationship mapping.

Mapping Categories (Union Types)

When a subclass gets its primary key from multiple superclasses.

Mapping:

- Create a table for the **category**.
- Include a **discriminator attribute** to identify which superclass tuple it came from.

AM, KANYA^y