# **UNIT-III**

#### RELATIONAL DATABASE DESIGN AND NORMALIZATION

#### **NORMALIZATION**

Normalization is the process of organizing data in a database to:

Reduce redundancy

Avoid update, insert, and delete anomalies

Maintain consistency

Improve efficiency

# 1. FIRST NORMAL FORM (1NF)

#### **Definition**

A relation is in **1NF** if:

All attributes contain atomic (indivisible) values.

No multivalued or repeating attributes.

Each record is unique.

# **Example (NOT in 1NF)**

**Employee Table** 

# **EmpID EmpName Skills** PhoneNumbers

101 Ravi Java, Python 98765, 87654

102 Priya SQL 76543

#### **Problems:**

Skills contains multiple values  $\rightarrow$  multivalued

PhoneNumbers contains multiple values

Violates 1NF

#### Convert to 1NF

Split multi-valued attributes into separate rows.

**Employee Table (1NF)** 

# **EmpID EmpName Skill PhoneNumber**

101 Ravi Java 98765

101 Ravi Python 87654

102 Priya SQL 76543

Now all values are atomic  $\rightarrow$  1NF achieved

# 2. SECOND NORMAL FORM (2NF)

#### **Definition**

A table is in **2NF** if:

It is in 1NF

# No partial dependency exists

A non-key attribute should NOT depend on part of a composite key.

(F) Applies only if a table has a composite primary key.

# **Example of Partial Dependency**

OrderDetails(OrderID, ProductID → Composite Key)

# OrderID ProductID ProductName Price Qty

Functional Dependencies:

 $\{OrderID, ProductID\} \rightarrow Qty$ 

ProductID → ProductName, Price (partial dependency)

# **Fixing 2NF Violation**

Split into two tables:

#### 1. Product Table

## **ProductID ProductName Price**

## 2. Order Details

# **OrderID ProductID Oty**

Now:

No partial dependency

Achieved 2NF

# 3. THIRD NORMAL FORM (3NF)

#### **Definition**

A relation is in **3NF** if:

It is in **2NF** 

No transitive dependency exists:  $X \rightarrow Y$  and  $Y \rightarrow Z$  is transitive

# **Example of Transitive Dependency**

**Student Table** 

# RollNo Name DeptID DeptName

Functional Dependencies:

RollNo → DeptID

DeptID → DeptName

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

So: RollNo  $\rightarrow$  DeptName (transitive)

## Convert to 3NF

Split the table:

#### 1. Student

| RollNo | Name | DeptID |

# 2. Department

| DeptID | DeptName |

Now:

No transitive dependency

Achieved 3NF

# 4. BOYCE-CODD NORMAL FORM (BCNF)

#### **Definition**

A relation is in **BCNF** if:

For every functional dependency  $X \rightarrow Y$ ,

X must be a superkey.

More strict than 3NF.

# **BCNF Example**

Lecture Hall Allocation Table:

# **Course Instructor Room**

Assume:

Instructor → Room

Room → Instructor

HULAM, KANYAKUNANI (Course, Instructor)  $\rightarrow$  Room

#### **Problem:**

Instructor is NOT a key

Room is NOT a key

Both determine other values  $\rightarrow$  violates BCNF

# Convert to BCND SERVE OPTIMIZE OUTSPREAD Split:

#### 1. Instructor-Room

| Instructor | Room |

#### 2. Course-Instructor

| Course | Instructor |

Now FDs:

Instructor  $\rightarrow$  Room (Instructor is key)

Course → Instructor (Course is key)

BCNF achieved.







## 5. FOURTH NORMAL FORM (4NF)

#### **Definition**

A table is in **4NF** if:

It is in BCNF

It has no non-trivial multivalued dependencies (MVDs)

# **Example of MVD**

A professor may teach multiple subjects

A professor may have multiple offices

# **Prof Subject Office**

Α DBMS Block-1

**DBMS** Α Block-2

Networks Block-1 Α

Α Networks Block-2

Here:

 $Prof \rightarrow \rightarrow Subject$ 

 $Prof \rightarrow \rightarrow Office$ 

Two independent multi-valued attributes → violates 4NF

#### Convert to 4NF

# 1. Prof-Subject

| Prof | Subject |

# 2. Prof-Office

| Prof | Office |

No multi-valued dependency in a single table Achieved **4NF** 

# 6. FIFTH NORMAL FORM (5NF)

#### **Definition**

A relation is in **5NF** if: **ERVE OPTIMIZE OUTSPREAD**It is in 4NF

It cannot be decomposed further without losing information

Deals with join dependencies

Used when:

Data comes from three or more independent entities

# **Example**

Supplier-Product-Region table:

#### ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

# **Supplier Product Region**

Assume:

A supplier can supply multiple products

A product can be supplied in multiple regions

Supplier works in multiple regions

These combine to create many rows.

To achieve 5NF, split into:

- 1. Supplier-Product
- 2. Product-Region
- 3. Supplier-Region

SEERING 4A Now joins reconstruct the original table without anomalies.

# **CASE STUDY 1: Normalizing a RETAIL INVENTORY DATABASE** UNNORMALIZED RetailInventory Table

# ItemID ItemName Supplier SupplierPhone StoreLocations PurchasePrices

101 Pen

ABC Co 98765

Chennai, Pune 10, 9.5

#### **Problems**

StoreLocations is multi-valued

PurchasePrices is multi-valued

Supplier details repeated → redundancy

# **Step 1: Convert to 1NF**

Break multi-valued attributes:

# ItemID ItemName Supplier SupplierPhone StoreLocation PurchasePrice

101 Pen ABC Co 98765 Chennai 10

101 Pen ABC Co 98765 Pune 9.5

# **Step 2: Remove Partial Dependencies (2NF)**

Assume Key = {ItemID, StoreLocation}

But Supplier depends only on ItemID → partial dependency. VE OPTIMIZE OUTSPREAD

Split:

#### **Item**

| ItemID | ItemName | Supplier |

## **ItemLocation**

| ItemID | StoreLocation | PurchasePrice |

# Supplier

| Supplier | SupplierPhone |

# **Step 3: Remove Transitive Dependencies (3NF)**

Supplier  $\rightarrow$  SupplierPhone is fine

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY No transitive dependencies remain.

#### Final BCNF / 4NF / 5NF

No multivalued dependencies.

Final database:

- ✓ Item(ItemID, ItemName, SupplierID)
- ✓ Supplier(SupplierID, SupplierName, SupplierPhone)
- **✓** ItemLocation(ItemID, StoreLocation, PurchasePrice)

# CASE STUDY 2: Normalizing a LIBRARY DATABASE **UNNORMALIZED Library Table**

#### **BookID Title Authors Member BorrowDate**

DBMS Navathe, Korth Suresh 2023-01-01 B101

#### **Problems**

Authors is multi-valued

Book borrowed by a member repeatedly → redundancy

#### 1NF

Split authors:

#### **BookID Title Author Member BorrowDate**

#### 2NF & 3NF

Dependencies:

BookID  $\rightarrow$  Title

BookID  $\rightarrow$  Author (M:N relationship  $\rightarrow$  separate table)

Member → BorrowDate depends on (BookID, Member)

#### Final 3NF Schema

- **✓** Book(BookID, Title)
- **✓** Author(AuthorID, AuthorName)
- **✓** BookAuthor(BookID, AuthorID)
- ✓ Member(MemberID, MemberName)
- OUTSPREAD **✓** Borrow(BookID, MemberID, BorrowDate)

#### FINAL SUMMARY TABLE OF NORMAL FORMS

#### **Normal Form Removes Violation Example** 1NF Multivalued attributes, repeating groups Skills = {Java, Python} ProductID → ProductName 2NF Partial dependency 3NF Transitive dependency DeptID → DeptName Instructor $\rightarrow$ Room **BCNF** Determinant not a key

#### ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

## **Normal Form Removes**

**4NF** Multivalued dependency

**5NF** Join dependency

# **Violation Example**

Prof →→ Subject, Office

Supplier-Product-Region

