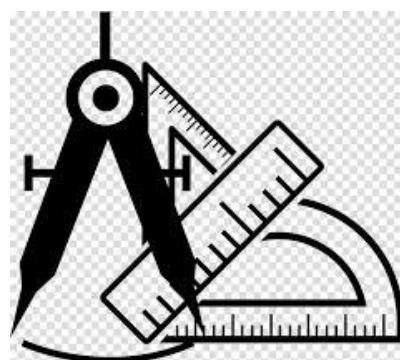


ROHINI

COLLEGE OF ENGINEERING AND TECHNOLOGY


Approved by AICTE and affiliated to Anna University,(An ISO Certified Institution)

Accredited by NAAC with A+ Grade

DEPARTMENT OF MECHANICAL ENGINEERING

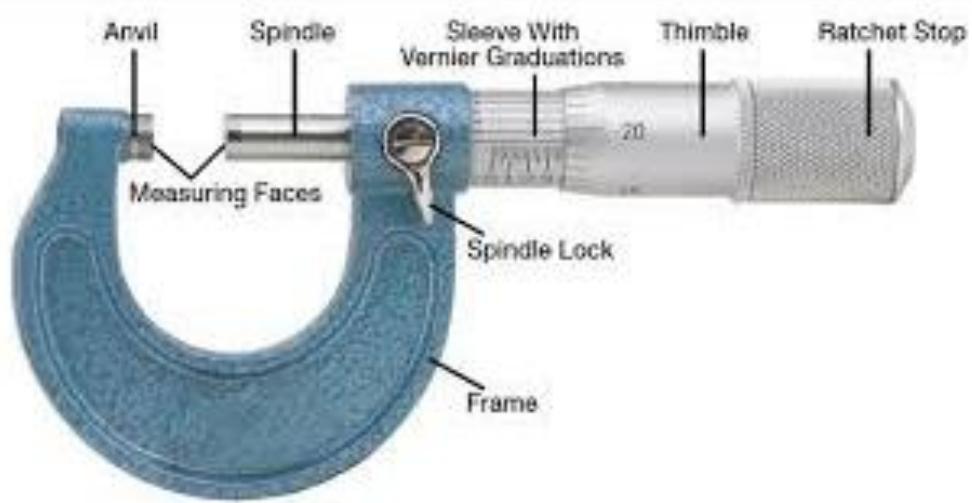
24ME403 - METROLOGY & MEASUREMENTS

Dr. A. ARUL MARCEL MOSHI,
ASSOCIATE PROFESSOR / MECH.

24ME403 – METROLOGY & MEASUREMENTS

UNIT II: MEASUREMENT OF LINEAR AND ANGULAR DIMENSIONS

CO2: To make use of the principle; applications of linear and angular measuring instruments in the assembly and transmission elements.


Micrometer

- A micrometer is a precision measuring instrument used to obtain extremely accurate dimensional readings, typically to within one-thousandth of a mm.
- It operates on the principle of a precision screw mechanism that converts small rotational movements of a thimble into precise linear displacement of a spindle.

Parts of a Micrometer:

- 1) **Frame:** The C-shaped body that provides structural rigidity and holds all components together.
- 2) **Anvil:** The fixed, hardened steel contact point against which the object is placed for measurement.
- 3) **Spindle:** The moving, threaded shaft that advances toward the anvil to contact the object being measured.
- 4) **Sleeve (or Barrel):** The stationary cylindrical part with a linear scale (main scale) engraved along its length.
- 5) **Thimble:** The rotating sleeve attached to the spindle, with a circular vernier scale around its circumference.

- 6) **Ratchet stop (or friction thimble):** A spring-loaded device at the end of the thimble that ensures consistent measuring pressure to prevent overtightening.
- 7) **Lock nut (or lock ring):** A lever or ring used to clamp and lock the spindle in place to retain a measurement.
- 8) **Spindle screw:** The precision internal screw mechanism inside the sleeve that converts the thimble's rotation into linear spindle movement.

Measurement procedure:

- i. Close the micrometer's spindle gently against the anvil and verify zero alignment. Note any zero error for later correction.
- ii. Rotate the thimble counterclockwise to open the spindle, then place the workpiece straightly between the spindle and anvil.
- iii. Turn the ratchet stop clockwise until it clicks, ensuring consistent and gentle contact without overtightening.
- iv. Secure the measurement by engaging the locking lever or locknut to prevent movement.
- v. Read the pitch scale reading (mm), and thimble scale coincidence.
- vi. Calculate the thimble scale reading, and determine the total reading.

$$\text{Thimble Scale Reading (TSR)} = \text{Thimble Scale Coincidence (TSC)} \times \text{Least Count (LC)}$$
 - Total Reading = Pitch Scale Reading (PSR) + Thimble Scale Reading (TSR)
- vii. Adjust the measured value by adding or subtracting any previously noted zero error.