

 24CS301 DSA

3.5 MINIMUM SPANNING TREE - KRUSKAL’S ALGORITHM

A second greedy strategy is repeatedly to select the edges in order of smallest

weight and accept an edge if it does not cause a cycle.

Steps:

1. Initially, there are |V| single-node trees. Adding an edge merges two trees into

one.

2. When the algorithm terminates, there is only one tree, and this is the minimum

spanning tree.

3. The algorithm terminates when enough edges are accepted.

The strategy

i. The edges are built into a minheap structure and each vertex is considered as a

sigle node tree.

ii. The deletemin operation is used to find the minimum cost edge (u,v).

iii. The vertices u and v are searched in the spanning tree set S and if the

returned sets are not same then (u,v) is added to the set s with the constraint

that adding (u,v) will not create a cycle in spanning tree set S.

iv. Repeat step (ii) and (iii) until a spanning tree is constructed with |V| - 1

edges.

Example

i. Initially all the vertices are single node trees.

ii. Select the smallest edge v1 to v4, both the nodes are different sets, it does

not form cycle.

iii. Select the next smallest edge v6 to v7. These two vertices are different sets;

it does not form a cycle, so it is included in the MST.

 24CS301 DSA

iv. Select the next smallest edge v1 to v2. These two vertices are different sets;

it does not form a cycle, so it is included in the MST.

v. Select the next smallest edge v3 to v4. These two vertices are different sets;

it does not form a cycle, so it is included in the MST.

vi. Select the next smallest edge v2 to v4 both v2 and v4 are same set, it forms

cycle so v2 – v4 edge is rejected.

vii. Select the next smallest edge v1 to v3, it forms cycle so v1 – v3 edge is

rejected.

viii. Select the next smallest edge v4 to v7, it does not form a cycle so

it is included in the tree.

ix. Select the next smallest edge v3 to v6, it forms a cycle so v3 – v6 edge is

rejected.

x. Select the next smallest edge v5 to v7, it does not form a cycle so it is

included in the tree.

Edge Weight Action

--

(v1,v4) 1 Accepted

(v6,v7) 1 Accepted

(v1,v2) 2 Accepted

(v3,v4) 2 Accepted

(v2,v4) 3 Rejected

(v1,v3) 4 Rejected

(v4,v7) 4 Accepted

(v3,v6) 5 Rejected

(v5,v7) 6 Accepted

(v3,v6) 5 Rejected

(v5,v7) 6 Accepted

 24CS301 DSA

Figure: Action of Kruskal's algorithm on G

All the nodes are included. The cost of minimum spanning tree = 16 (2 + 1+ 2

+ 4 + 1 + 6).

Routine for kruskals algorithm

void kruskal(graph G)

{

int EdgesAccepted;

DisjSet S;

PriorityQueue H;

vertex u, v;

SetType uset, vset;

Edge e;

Initialize(S); // form a single node tree

ReadGraphIntoHeapArray(G, H);

BuildHeap(H);

EdgesAccepted = 0;

while(EdgesAccepted < NumVertex-1)

{

e = DeleteMin(H); // Selection of minimum edge

 24CS301 DSA

uset = Find(u, S);

vset = Find(v, S);

if(uset != vset)

{

/* accept the edge */

EdgesAccepted++;

SetUnion(S, uset, vset);

}

}

}

 The appropriate data structure is the union/find algorithm

 The worst-case running time of this algorithm is O(|E| log |E|), which is

dominated by the heap operations. Notice that since |E| = O(|V|2),

this running time is actually O(|E| log |V|).

