Biological Effects of Dosimetry

Dosimetry is the measurement of radiation dose absorbed by biological tissues. The biological effects of radiation depend on the **dose**, **dose rate**, **radiation type**, **and tissue sensitivity**. Understanding these effects is crucial for **radiation therapy**, **radiation protection**, **and space radiation research**.

1. Types of Biological Effects of Radiation

A. Deterministic Effects (Threshold Effects)

- Occur when radiation **dose exceeds a threshold**.
- The severity **increases with dose**.
- Common in high-dose exposures, such as radiation accidents or radiotherapy.

♦ Examples:

- Skin burns (erythema) threshold ~2 Gy.
- **Cataracts** threshold ~0.5 Gy.
- Radiation sickness occurs at whole-body doses above 1 Gy.
- Sterility threshold ~3–5 Gy for testes, ~1.5 Gy for ovaries.

B. Stochastic Effects (Non-Threshold, Probabilistic Effects)

- No minimum dose threshold any dose can increase risk.
- Probability of occurrence increases with dose, but severity is independent of dose.
- Main concern in low-dose radiation exposure (e.g., medical imaging, environmental exposure).

♦ Examples:

- **Cancer induction** (e.g., leukemia, thyroid cancer).
- Genetic mutations \rightarrow Passed to offspring if germ cells are affected.
- Long-term cardiovascular diseases (linked to chronic radiation exposure).

2. Dose-Dependent Biological Responses

A. Low Doses (< 0.1 Gy)

• Minimal **immediate** biological damage.

- **DNA repair mechanisms** usually correct damage.
- Risk of stochastic effects (e.g., cancer) increases over time.
- Used in diagnostic imaging (X-rays, CT scans, PET scans).
- B. Moderate Doses (0.1 1 Gy)
 - Cellular damage increases, but most cells survive.
 - Risk of cancer and genetic mutations rises.
 - Can cause **temporary bone marrow suppression**.

C. High Doses (1 – 10 Gy)

- Significant tissue damage and cell death.
- Symptoms of **acute radiation syndrome** (**ARS**) appear (nausea, vomiting, fatigue).
- Used in **radiation therapy**, requiring **fractionation** to minimize normal tissue damage.

D. Very High Doses (> 10 Gy)

- Severe and often fatal radiation injuries.
- Whole-body doses > 6 Gy without treatment are lethal.
- Hematopoietic syndrome (bone marrow failure), gastrointestinal syndrome, and neurological syndrome occur at extreme doses.

3. Radiation Effects at the Cellular Level

A. DNA Damage & Repair

- Ionizing radiation interacts with **DNA**, causing:
 - Single-strand breaks (SSBs) \rightarrow Usually repairable.
 - Double-strand breaks (DSBs) → More severe, leading to mutations, apoptosis, or carcinogenesis.
- Cell fate after radiation exposure:
 - 1. Successful repair \rightarrow Cell survives normally.
 - 2. **Mutation** \rightarrow Potential cancer initiation.
 - 3. Apoptosis (Programmed Cell Death) \rightarrow Prevents proliferation of damaged cells.
 - 4. **Necrosis** \rightarrow Uncontrolled cell death, leading to tissue damage.

4. Factors Influencing Radiation Effects

A. Radiation Type

- High-LET radiation (alpha particles, neutrons, heavy ions) \rightarrow More damaging due to dense ionization.
- Low-LET radiation (X-rays, gamma rays, beta particles) \rightarrow Less damaging but can still induce long-term effects.

B. Dose Rate

- High dose rates \rightarrow More severe effects due to overwhelming repair mechanisms.
- Low dose rates \rightarrow Allows for better cellular repair, reducing deterministic effects.

C. Tissue Sensitivity (Law of Bergonié and Tribondeau)

- Rapidly dividing cells (bone marrow, intestines, skin, reproductive cells) are more radiosensitive.
- Non-dividing cells (neurons, muscle cells) are radioresistant.
- **5.** Applications of Dosimetry in Radiation Protection & Medicine

✓ Radiation Therapy:

- Optimizes tumor control while minimizing normal tissue damage.
- Uses fractionated doses to allow healthy tissue recovery.

✓ Medical Imaging Safety:

• Ensures minimally invasive radiation exposure in X-rays, CT scans, and nuclear medicine.

✓ Nuclear Industry & Space Radiation Protection:

• **Dosimeters** worn by workers/astronauts to monitor exposure.

✓ Epidemiological Studies:

• Used in research on **cancer risks in radiation-exposed populations** (e.g., atomic bomb survivors, Chernobyl workers).