24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT V — COLLECTIONS FRAMEWORK
Collection overview — Recent changes to collection - Collection interface — Collection

classes — Working with maps —Collection algorithms - The legacy classes and interfaces.
Applet class: Types — Basics — Architecture — Skeleton — Display methods — repainting —
Status window — HTML applet tag — Passing parameter - Creating a swing applet -
Painting in swing - A paint example, Exploring swing

Creating a swing applet

The second type of program that commonly uses Swing is the applet. Swing-based
applets are similar to AWT-based applets, but with an important difference: A Swing
applet extends JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet
includes all of the functionality found in Applet and adds support for Swing. JApplet is a
top-level Swing container, which means that it is not derived from JComponent. Because
JApplet is a top-level container, it includes the various panes described earlier. This
means that all components are added to JApplet’s content pane in the same way that
components are added to JFrame’s content pane.

Swing applets use the same four lifecycle methods as described in Chapter 21:
init(), start(), stop(), and destroy(). Of course, you need override only those methods
that are needed by your applet. Painting is accomplished differently in Swing than it is in
the AWT, and a Swing applet will not normally override the paint() method.

One other point: All interaction with components in a Swing applet must take
place on the event dispatching thread, as described in the previous section. This threading
issue applies to all Swing programs.

Example of a Swing applet.
It provides the same functionality as the previous application, but does so in applet form.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
/*
This HTML can be used to launch the applet:
<object code="MySwingApplet" width=220 height=90>
</object>
*/
public class MySwingApplet extends JApplet
{
JButton jbtnAlpha;
JButton jbtnBeta;

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

JLabel jlab;
public void init()
{
try
{
SwingUtilities.invokeAndWait(new Runnable ()
{
public void run()
{
makeGUI(); // initialize the GUI
b
$);
h
catch(Exception exc)
{
System.out.println("Can't create because of "+ exc);
b
b
private void makeGUI()
{

setLayout(new FlowLayout());

jbtnAlpha = new JButton("Alpha");

jbtnBeta = new JButton("Beta");
jbtnAlpha.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent le)
{
jlab.setText("Alpha was pressed.");
b
$);
jbtnBeta.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent le)
{
jlab.setText("Beta was pressed.");
b
1);

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

add(jbtnAlpha);
add(jbtnBeta);
jlab = new JLabel("Press a button.");
add(jlab);
b
}
Output:
'lpulr-_rl Yiewer: M... EJ@|E|
Applat
Alpha Beta
Alpha was pressed.
Applet started

There are two important things to notice about this applet. First, MySwingApplet
extends JApplet. As explained, all Swing-based applets extend JApplet rather than
Applet. Second, the init() method initializes the Swing components on the event
dispatching thread by setting up a call to makeGUI(). Notice that this is accomplished
through the use of invokeAndWait() rather than invokeLater(). Applets must use
invokeAndWait() because the init() method must not return until the entire initialization
process has been completed. In essence, the start() method cannot be called until after
initialization, which means that the GUI must be fully constructed.

Inside makeGUI(), the two buttons and label are created, and the action listeners
are added to the buttons. Finally, the components are added to the content pane. Although
this example is quite simple, this same general approach must be used when building any
Swing GUI that will be used by an applet.

Painting in Swing

Although the Swing component set is quite powerful, you are not limited to using
it because Swing also lets you write directly into the display area of a frame, panel, or
one of Swing’s other components, such as JLabel. Although many (perhaps most) uses of
Swing will not involve drawing directly to the surface of a component, it is available for
those applications that need this capability. To write output directly to the surface of a
component, you will use one or more drawing methods defined by the AWT, such as
drawLine() or drawRect().

Painting Fundamentals

Swing’s approach to painting is built on the original AW T-based mechanism, but Swing’s
implementation offers more finally grained control. Before examining the specifics of
Swing-based painting, it is useful to review the AWT-based mechanism that underlies it.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

The AWT class Component defines a method called paint() that is used to draw output
directly to the surface of a component. For the most part, paint() is not called by your
program.

Rather, paint() is called by the run-time system whenever a component must be
rendered. This situation can occur for several reasons. For example, the window in which
the component is displayed can be overwritten by another window and then uncovered.
Or, the window might be minimized and then restored. The paint() method is also called
when a program begins running. When writing AWT-based code, an application will
override paint() when it needs to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components
inherit the paint() method. However, you will not override it to paint directly to the
surface of a component. The reason is that Swing uses a bit more sophisticated approach
to painting that involves three distinct methods: paintComponent(), paintBorder(), and
paintChildren(). These methods paint the indicated portion of a component and divide
the painting process into its three distinct, logical actions. In a lightweight component, the
original AWT method paint() simply executes calls to these methods, in the order just
shown.

To paint to the surface of a Swing component, you will create a subclass of the
component and then override its paintComponent() method. This is the method that
paints the interior of the component. You will not normally override the other two
painting methods. When overriding paintComponent(), the first thing you must do is call
super.paintComponent(), so that the superclass portion of the painting process takes
place. (The only time this is not required is when you are taking complete, manual
control over how a component is displayed.) After that, write the output that you want to
display. The paintComponent() method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written. To cause a component
to be painted under program control, call repaint(). It works in Swing just as it does for
the AWT. The repaint() method is defined by Component. Calling it causes the system to
call paint() as soon as it is possible to do so. Because painting is a time-consuming
operation, this mechanism allows the run-time system to defer painting momentarily until
some higher-priority task has completed, for example. Of course, inSwing the call to
paint() results in a call to paintComponent(). Therefore, to output to the surface of a
component, your program will store the output until paintComponent() is called. Inside
the override paintComponent(), you will draw the stored output.

Compute the Paintable Area

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

When drawing to the surface of a component, you must be careful to restrict your
output to the area that is inside the border. Although Swing automatically clips any output
that will exceed the boundaries of a component, it is still possible to paint into the border,
which will then get overwritten when the border is drawn. To avoid this, you must
compute the paintable area of the component. This is the area defined by the current size
of the component minus the space used by the border. Therefore, before you paint to a
component, you must obtain the width of the border and then adjust your drawing
accordingly. To obtain the border width, call getlnsets(), shown here:

Insets getlnsets()
This method is defined by Container and overridden by JComponent. It returns an Insets
object that contains the dimensions of the border. The inset values can be obtained by
using these fields:

int top;

int bottom;

int left;

int right;

These values are then used to compute the drawing area given the width and the height of
the component. You can obtain the width and height of the component by calling
getWidth()

and getHeight() on the component. They are shown here:

int getWidth()

int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the
Component.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

