ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT II - SOFTWARE DESIGN AND UML DIAGRAMS [9 hours]
Design Principles (Modularity, Reusability, Abstraction), UML Diagrams: Use Case,
Class, Activity, Sequence, Introduction to Design Patterns (Singleton, Factory,

MVC),Building Simple System Architecture (Layered & Client-Server).

INTRODUCTION TO DESIGN PATTERNS
Design patterns are reusable solutions to common software design problems. They help
create clean, scalable, and maintainable code by providing proven design templates.

e Reusable solutions to recurring problems.

e Improve code structure and maintainability.

e Enhance scalability, flexibility, and reusability.

e Standardize design practices across projects.

e (ategorized into Creational, Structural, Behavioral.
Types of Design Patterns
Creational, Structural, and Behavioral Design Patterns -three categories that define how
objects are created, organized, and how they interact.

Basically, there are several types of design patterns that are commonly used in software

development.
Types of Design Pattern
oy -
AL olg e
i == O--#--0
Creational Design Structural Behavioral Design

Patterns Design Patterns Patterns

Creational Design Patterns

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

These Creational Design Patterns deal with object creation in a flexible and efficient
manner. They help you control how and when objects are instantiated.

e Singleton Pattern

e Factory Method Pattern

e Abstract Factory Pattern

e Builder Pattern

e Prototype Pattern

e Object Pool Pattern

e [Lazy Initialization
Structural Design Patterns

Structural patterns explain how classes and objects are combined to form larger
structures. They improve code flexibility by simplifying relationships between
components.

e Adapter Pattern

e Decorator Pattern

e Facade Pattern

e Composite Pattern

e Proxy Pattern

e Bridge Pattern

e Flyweight Pattern
Behavioral Design Patterns

Behavioral patterns define how objects communicate and distribute
responsibilities. They help manage workflows, interactions, and decision-making within a
system

e Observer Pattern

e Strategy Pattern

e (Command Pattern

e (Chain of Responsibility Pattern

e Template Method Pattern

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Iterator Pattern
State Pattern
Mediator Pattern
Memento Pattern

Visitor Pattern

MVC Design Pattern

MVC separates an application into Model, View, and Controller for clean

architecture. It improves scalability, maintainability, and parallel development in large

systems

Singleton pattern

The Singleton Design Pattern ensures that a class has only one instance and

provides a global access point to it. It is used when we want centralized control of

resources, such as managing database connections, configuration settings or logging.

. Singleton Class
Client A
Static Object
Client B ) ~
Private Constructor >
Client C Static Method ~ |
_—

Real-World Applications of the Singleton Pattern

1.

ok N

Logging Systems : Maintain a consistent logging mechanism across an

application.

Configuration Managers : Centralize access to configuration settings.

Database Connections : Manage a single point of database access.

Thread Pools : Efficiently manage a pool of threads for concurrent tasks.

Cache Managers, Print Spoolers (Single Printer Queue) and Runtime

Environments ( java.lang.Runtime is a singleton)

Features of the Singleton Design Pattern

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1. Single Instance: Ensures only one object of the class exists in the JVM.

2. Global Access Point: Provides a centralized way to access the instance.

3. Lazy or Eager Initialization: An Instance can be created at class load time
(eager) or when first needed (lazy).

4. Thread Safety: Can be designed to work correctly in multithreaded environments.

5. Resource Management: Useful for managing shared resources like
configurations, logging or database connections.

6. Flexibility in Implementation: Can be implemented using eager initialization,
lazy initialization, double-checked locking or an inner static class.

Key Components

Below are the main key components of Singleton Method Design Pattern:

Stack Memory Heap Memory(one instance of
Singleton)
Obj1
(ref object) Private Static
b Public Static
) e o Getinstance()
(ref object)
Public Static
Both reference objects display()
points to the same Private Constructor
instance of the singleton Singleton()

Key Components
1. Static Member

The Singleton pattern or pattern Singleton employs a static member within the
class. This static member ensures that memory is allocated only once, preserving the
single instance of the Singleton class.
private static Singleton instance;

2. Private Constructor

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

The Singleton pattern or pattern singleton incorporates a private constructor,
which serves as a barricade against external attempts to create instances of the Singleton
class. This ensures that the class has control over its instantiation process.
class Singleton
{

private Singleton()
{
}

b
3. Static Factory Method

A crucial aspect of the Singleton pattern is the presence of a static factory method.
This method acts as a gateway, providing a global point of access to the Singleton object.
When someone requests an instance, this method either creates a new instance (if none
exists) or returns the existing instance to the caller.
public static Singleton getlnstance()
{

if (instance == null) {
instance = new Singleton();

b

return instance;
}
Different Ways to Implement Singleton Method Design Pattern
Sometimes we need to have only one instance of our class for example a single
DB connection shared by multiple objects as creating a separate DB connection for every
object may be costly. Similarly, there can be a single configuration manager or error
manager in an application that handles all problems instead of creating multiple

managers.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Thread one Thread two
public static Singleton getinstance(){ public static Singleton getinstance(){
if(obj==null) if(obj==null)
obj=new Singleton(); obj=new Singleton();
return obj; return obj;

} }

Various design options for implementation:
1. Classic (Lazy Initialization): In this method, class is initialized whether it is to be
used or not. The main advantage of this method is its simplicity. You initiate the class at
the time of class loading. Its drawback 1is that class is always initialized whether it 1s
being used or not.
Example: Classical Java implementation of singleton design pattern
class Singleton {

private static Singleton obyj;

private Singleton() {}

public static Singleton getlnstance()

{
if (obj == null)
obj = new Singleton();
return obj;
}

Here we have declared getInstance() static so that we can call it without
instantiating the class. The first time getInstance() is called it creates a new singleton
object and after that, it just returns the same object.

This execution sequence creates two objects for the singleton. Therefore this classic

implementation is not thread-safe.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2. Thread-Safe (Synchronized): Make getlnstance() synchronized to implement
Singleton Method Design Pattern
Example: Thread Synchronized Java implementation of singleton design pattern
class Singleton {

private static Singleton obj;

private Singleton() {}

public static synchronized Singleton getlnstance()

{

if (obj == null)
obj = new Singleton();

return obj;

}

Here using synchronized makes sure that only one thread at a time can execute
getlnstance(). The main disadvantage of this method is that using synchronized every
time while creating the singleton object is expensive and may decrease the performance
of your program. However, if the performance of getInstance() is not critical for your
application this method provides a clean and simple solution.
3. Eager Initialization (Static Block): In this method, class is initialized only when it is
required. It can save you from instantiating the class when you don't need it. Generally,
lazy initialization is used when we create a singleton class.
Example: Static initializer based Java implementation of singleton design pattern
class Singleton {

private static Singleton obj = new Singleton();

private Singleton() {}

public static Singleton getlnstance() { return obyj; }
}
Here we have created an instance of a singleton in a static initializer. JVM executes a

static initializer when the class is loaded and hence this is guaranteed to be thread-safe.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Use this method only when your singleton class is light and is used throughout the
execution of your program.
4. Double-Checked Locking (Most Efficient): Use “Double Checked Locking” to
implement singleton design pattern
Example: Double Checked Locking based Java implementation of singleton design
pattern
class Singleton {
private static volatile Singleton obj = null;
private Singleton() {}
public static Singleton getlnstance()
{
if (obj == null) {
synchronized (Singleton.class)
{
if (obj == null)

obj = new Singleton();

return obyj;

}

We have declared the obj yolatile which ensures that multiple threads offer the obj

variable correctly when it is being initialized to the Singleton instance. This method
drastically reduces the overhead of calling the synchronized method every time.
5. Static Inner Class (Best Java-Specific Way)
In Java, a Singleton can be implemented using a static inner class.
e A class is loaded into memory only once by the JVM.

e An inner class is loaded only when it is referenced.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Therefore, the Singleton instance is created lazily, only when the getlnstance()
method accesses the inner class.
Example: using class loading concept singleton design pattern
public class Singleton {
private Singleton() {
System.out.println("Instance created");
}
private static class SingletonInner {
private static final Singleton INSTANCE=new Singleton();
}

public static Singleton getlnstance()

{
return Singletonlnner.INSTANCE;

}

In the above code, we are having a private static inner class SingletonInner and having a
private field. Through, getlnstance() method of the singleton class, we will access the
field of the inner class and due to being inner class, it will be loaded only one time at the
time of accessing the INSTANCE field for the first time. And the INSTANCE is a static
member due to which it will be initialized only once.
6. Enum Singleton: In Java, a Singleton can also be implemented using an enum, which
is the simplest and safest approach. Enums are loaded by the JVM only once, and each
enum constant is created exactly one time. Therefore, the Singleton instance is created
safely when the enum is first accessed.
Example: Enum-based Singleton
public enum Singleton {

INSTANCE;

public void doSomething() {

System.out.println("Doing something...");

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

Explanation:
In this implementation
e INSTANCE is the single allowed object of the enum.
e The JVM ensures that the enum is thread-safe, created only once, and cannot
be instantiated again.
e [t also automatically protects against serialization and reflection issues.
e When Singleton. INSTANCE is accessed for the first time, the enum is loaded
and the instance is initialized only once.
Implementation of the singleton Design pattern
Example: The implementation of the singleton Design pattern is very simple and consists
of a single class.
import java.io.*;
class Singleton {
// static class
private static Singleton instance;
private Singleton()

{

System.out.printIn("Singleton is Instantiated.");

}

public static Singleton getlnstance()

{
1

if (instance == null)
instance = new Singleton();
return instance;

}

public static void doSomething()

{

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

System.out.println("Something is Done.");

class GFG {

public static void main(String[] args)

{

Singleton.getInstance().doSomething();

}
Output

Singleton is Instantiated.

Something is Done.

Factory Method Pattern

The Factory Method is a creational design pattern that defines an interface for
creating objects but lets subclasses decide which object to instantiate. It promotes loose
coupling by delegating object creation to a method, making the system more flexible and
extensible.

e Subclasses override the factory method to produce specific object types.

e Supports easy addition of new product types without modifying existing code.

e Enhances maintainability and adaptability at runtime.
Features of Factory Method Design Pattern

e Encapsulation of Object Creation: Clients don’t know how objects are created.

e [ oose Coupling: Reduces dependency between client and concrete classes.

Scalability: New product types can be introduced without altering client code.

Reusability: Common creation logic can be reused across factories.

Flexibility: Supports multiple product families with minimal changes.

Testability: Easy to use mock factories for unit testing

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Components of Factory Method Design Pattern
Below are the main components of Factory Design Pattern:
e Product: Abstract interface or class for objects created by the factory.
e (Concrete Product: The actual object that implements the product interface.
e C(reator (Factory Interface/Abstract Class): Declares the factory method.
e Concrete Creator (Concrete Factory): Implements the factory method to create
specific products.
Factory Method Design Pattern Example
Below is the problem statement to understand Factory Method Design Pattern:
Consider a software application that needs to handle the creation of various types of
vehicles, such as Two Wheelers, Three Wheelers and Four Wheelers. Each type of
vehicle has its own specific properties and behaviors.
1. Without Factory Method Design Pattern
import java.io.*;
// Library classes
abstract class Vehicle {
public abstract void printVehicle();
}
class TwoWheeler extends Vehicle {
public void printVehicle() {

System.out.println("I am two wheeler");

}

class FourWheeler extends Vehicle {
public void printVehicle() {

System.out.println("I am four wheeler");

}

// Client (or user) class

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

class Client {
private Vehicle pVehicle;
public Client(int type) {
if (type = 1) {
pVehicle = new TwoWheeler();
} else if (type == 2) {
pVehicle = new FourWheeler();
} else {
pVehicle = null;

h
public void cleanup() {

if (pVehicle !=null) {
pVehicle = null;

b
public Vehicle getVehicle() {

return pVehicle;

}

// Driver program
public class GFG {
public static void main(String[] args) {
Client pClient = new Client(1);
Vehicle pVehicle = pClient.getVehicle();
if (pVehicle !=null) {
pVehicle.printVehicle();

¥
pClient.cleanup();

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}
Output

[ am two wheeler
Issues with the Current Design

e Tight coupling: Client depends directly on product classes.

e Violation of SRP: Client handles both product creation and usage.

e Hard to extend: Adding a new vehicle requires modifying the client.

Solutions to the Problems

e Define a Factory Interface: Create an interface, VehicleFactory, with a method
to produce vehicles.

e C(Create Specific Factories: Implement classes like TwoWheelerFactory and
FourWheelerFactory that follow the VehicleFactory interface, providing
methods for each vehicle type.

e Revise the Client Class: Change the Client class to use a VehicleFactory
instance instead of creating vehicles directly. This way, it can request vehicles
without using conditional logic.

e Enhance Flexibility: This structure allows for easy addition of new vehicle
types by simply creating new factory classes, without needing to alter existing
Client code.

2. With Factory Method Design Pattern

Let's breakdown the code into component wise code:

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Factory Method Design Pattern Class Diagram

Product Interface Creator Interface
| vehicle VehicleFactory |
"y PrmtVeplclEIk void | . A, + create Vehicle(): Vehicle
M = s TR A
; FourWheeler TwoWheeler b | TwoWheelerFactory TwoWheelerFactory .
" [ printVehicle(): void| | + printVehicle(): void | © " [+ createVehicle(): Vehicle ||+ createVehicle(): Vehicle
. A rY % s . :
B SR - S
o sereate> T
Concrete Products Creator Interface

Factory Method Design Pattern
1. Product Interface
Product interface representing a vehicle
public abstract class Vehicle {
/I Constructor to prevent direct instantiation
private Vehicle() {
throw new UnsupportedOperationException("Cannot construct Vehicle instances

directly");
}

/I Abstract method to be implemented by subclasses

public abstract void printVehicle();
}
2. Concrete Products
Concrete product classes representing different types of vehicles
public class Vehicle {

public void printVehicle() {

// This method should be overridden

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

public class TwoWheeler extends Vehicle {
@Override
public void printVehicle() {

System.out.println("T am two wheeler");

}

public class FourWheeler extends Vehicle {
@Override
public void printVehicle() {

System.out.println("T am four wheeler");

}

3. Creator Interface (Factory Interface)
Factory interface defining the factory method
public interface VehicleFactory {
Vehicle createVehicle();
}
4. Concrete Creators (Concrete Factories)
Concrete factory class for TwoWheeler
public interface Vehicle {}
public class TwoWheeler implements Vehicle {}
public class FourWheeler implements Vehicle {}
public interface VehicleFactory {
Vehicle createVehicle();
}
public class TwoWheelerFactory implements VehicleFactory {
public Vehicle createVehicle() {

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

return new TwoWheeler();

}
public class FourWheelerFactory implements VehicleFactory {

public Vehicle createVehicle() {

return new FourWheeler();

}
Complete Code of this example:

// Library classes
abstract class Vehicle {
public abstract void printVehicle();
}
class TwoWheeler extends Vehicle {
public void printVehicle() {

System.out.println("I am two wheeler");

}

class FourWheeler extends Vehicle {
public void printVehicle() {

System.out.println("T am four wheeler");

}

// Factory Interface
interface VehicleFactory {
Vehicle createVehicle();
}
// Concrete Factory for TwoWheeler
class TwoWheelerFactory implements VehicleFactory {

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

public Vehicle createVehicle() {

return new TwoWheeler();

}
// Concrete Factory for FourWheeler

class FourWheelerFactory implements VehicleFactory {
public Vehicle createVehicle() {

return new FourWheeler();

}

// Client class
class Client {

private Vehicle pVehicle;

public Client(VehicleFactory factory) {
p Vehicle = factory.create Vehicle();

}

public Vehicle getVehicle() {
return pVehicle;

}

// Driver program
public class GFG {
public static void main(String[] args) {

VehicleFactory twoWheelerFactory = new TwoWheelerFactory();
Client twoWheelerClient = new Client(twoWheelerFactory);
Vehicle twoWheeler = twoWheelerClient.getVehicle();
twoWheeler.printVehicle();
VehicleFactory fourWheelerFactory = new FourWheelerFactory();

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Client fourWheelerClient = new Client(fourWheelerFactory);
Vehicle fourWheeler = fourWheelerClient.getVehicle();
fourWheeler.printVehicle();

}
Output

[ am two wheeler

I am four wheeler

MODEL VIEW CONTROLLER

The MVC design pattern is a software architecture pattern that separates an
application into three main components: Model, View, and Controller, making it easier to
manage and maintain the codebase. It also allows for the reusability of components and
promotes a more modular approach to software development.

What is the MVC Design Pattern?

The Model View Controller (MVC) design pattern specifies that an application
consists of a data model, presentation information, and control information. The pattern
requires that each of these be separated into different objects.

e The MVC pattern separates the concerns of an application into three distinct
components, each responsible for a specific aspect of the application's
functionality.

e This separation of concerns makes the application easier to maintain and extend,
as changes to one component do not require changes to the other components.

Why use MVC Design Pattern?

The MVC (Model-View-Controller) design pattern breaks an application into three
parts: the Model (which handles data), the View (which is what users see), and the
Controller (which connects the two). This makes it easier to work on each part separately,

so you can update or fix things without messing up the whole app. It helps developers

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

add new features smoothly, makes testing simpler, and allows for better user interfaces.
Overall, MVC helps keep everything organized and improves the quality of the software.
Components of the MVC Design Pattern

» 0O @
. —>» Controller

Request Contacts

e Ehou Model
Returns

View (L { Abstraction Layer } ‘ ' J

Delivers :
Database

1. Model

The Model component in the MVC (Model-View-Controller) design pattern
demonstrates the data and business logic of an application. It is responsible for managing
the application's data, processing business rules, and responding to requests for
information from other components, such as the View and the Controller.
2. View

Displays the data from the Model to the user and sends user inputs to the
Controller. It is passive and does not directly interact with the Model. Instead, it receives
data from the Model and sends user inputs to the Controller for processing.
3. Controller

Controller acts as an intermediary between the Model and the View. It handles
user input and updates the Model accordingly and updates the View to reflect changes in
the Model. It contains application logic, such as input validation and data transformation.

Communication between the Components

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

This below communication flow ensures that each component is responsible for a

specific aspect of the application's functionality, leading to a more maintainable and

scalable architecture

User Interaction with View: The user interacts with the View, such as clicking a
button or entering text into a form.

View Receives User Input: The View receives the user input and forwards it to
the Controller.

Controller Processes User Input: The Controller receives the user input from the
View. It interprets the input, performs any necessary operations (such as updating
the Model), and decides how to respond.

Controller Updates Model: The Controller updates the Model based on the user
input or application logic.

Model Notifies View of Changes: If the Model changes, it notifies the View.
View Requests Data from Model: The View requests data from the Model to
update its display.

Controller Updates View: The Controller updates the View based on the changes
in the Model or in response to user input.

View Renders Updated UI: The View renders the updated Ul based on the
changes made by the Controller.

Example of the MVC Design Pattern

Below is the code of above problem statement using MVC Design Pattern:

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

- -~
— S ddudiate il T - ~
»” . - Pl Y .
~ € .
o N » StudentController \
’ Student 2 i s
"' =, () - model: Student \
1 - roliNo: String T~ b - view: StudentView 1
- name: Strin
! 9 i + StudentController(model: Student, view: :
‘\ + getRollNo(): String gi 2 StudentView) /
\ + setRolINo(roliNo: String): void s 0\ + setStudentName(name: String): void ’
. + getName(): String ’ v + getStudentName(): String ?
» .|+ setName(name: String): void |, 2 v W setStudentRollNo(rollNo: String): void
N - = h+ getStudentRolINo(): String 5 &
“ i - SupdateView(): void .
ar - Controller
Model TNeada==T
™ - T ~ =
” - ~
i ’ StudentView A
iew ﬂ ]
. + printStudentDetails(name: String, roliNo: String) > =
- - =

-
-
- -
T e e =

1. Model (Student class)
Represents the data (student's name and roll number) and provides methods to access and
modify this data.
class Student {
private String rollNo;
private String name;
public String getRolINo() {
return rolINo;
}
public void setRolINo(String rollNo) {
this.rolINo = rolINo;
}
public String getName() {
return name;
}
public void setName(String name) {

this.name = name;

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

b
2. View (StudentView class)

Represents how the data (student details) should be displayed to the user. Contains
a method (printStudentDetails) to print the student's name and roll number.
class StudentView {
public void printStudentDetails(String studentName, String studentRolINo) {
System.out.println("Student:");
System.out.println("Name: " + studentName);

System.out.println("Roll No: " + studentRolINo);

}
3. Controller (StudentController class)

Acts as an intermediary between the Model and the View. Contains references to the
Model and View objects. Provides methods to update the Model (e.g., setStudentName,
setStudentRolINo) and to update the View (updateView).
class StudentController {
private Student model;
private StudentView view;
public StudentController(Student model, StudentView view) {
this.model = model;
this.view = view;
}
public void setStudentName(String name) {
model.setName(name);
}
public String getStudentName() {

return model.getName();

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

public void setStudentRollNo(String rollNo) {
model.setRolINo(rolINo);

h

public String getStudentRollNo() {
return model.getRolINo();

}

public void updateView() {
view.printStudentDetails(model.getName(), model.getRolINo());

}

Complete code for the above example
Below is the complete code for the above example:
class Student {
private String rollNo;
private String name;
public String getRolINo() {
return rollNo;
}
public void setRolINo(String rolINo) {
this.rolINo = rolINo;
}
public String getName() {
return name;
}
public void setName(String name) {

this.name = name;

}

class StudentView {

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

public void printStudentDetails(String studentName, String studentRolINo) {
System.out.println("Student:");
System.out.println("Name: " + studentName);

System.out.println("Roll No: " + studentRolINo);

}

class StudentController {

private Student model;

private StudentView view;

public StudentController(Student model, StudentView view) {
this.model = model;
this.view = view;

}

public void setStudentName(String name) {
model.setName(name);

}

public String getStudentName() {
return model.getName();

}

public void setStudentRolINo(String rollNo) {
model.setRollNo(rolINo);

}

public String getStudentRollNo() {
return model.getRolINo();

}

public void updateView() {
view.printStudentDetails(model.getName(), model.getRolINo());

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

public class MV CPattern {

public static void main(String[] args) {
Student model = retriveStudentFromDatabase();
StudentView view = new StudentView();
StudentController controller = new StudentController(model, view);
controller.updateView();
controller.setStudentName(" Vikram");
controller.updateView();

}

private static Student retriveStudentFromDatabase() {
Student student = new Student();
student.setName("Lokesh");
student.setRollNo("15UCS157");

return student;

}
Student:

Name: Lokesh

Roll No: 15UCS157
Student:

Name: Vikram

Roll No: 15UCS157

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



