UNIT II
SERVER SIDE PROGRAMMING WITH NODE JS

2.1 INRODUCTION TO WEB SERVER
Web Server:
Web server is a program which processes the network requests of the users

and serves them with files that create web pages. This exchange takes place using

Hypertext Transfer Protocol (HTTP).

Basically, web servers are computers used to store HTTP files which makes a
website and when a client requests a certain website, it delivers the requested
website to the client. For example, you want to open Facebook on your laptop
and enter the URL in the search bar of google. Now, the laptop will send an HTTP
request to view the facebook webpage to another computer known as the
webserver. This computer (webserver) contains all the files (usually in HTTP
format) which make up the website like text, images, gif files, etc. After
processing the request, the webserver will send the requested website-related files

to your computer and then you can reach the website.

Request Request
> q
Response < Response r
\. -
Web Browsers Internet Web Serve

oG

There are many web servers available in the market both free and paid. Some of

them are described below:

o Apache HTTP server: It is the most popular web server and about 60
percent of the world’s web server machines run this web server. The
Apache HTTP web server was developed by the Apache Software
Foundation. It is an open-source software which means that we can access
and make changes to its code and mold it according to our preference. The
Apache Web Server can be installed and operated easily on almost all

operating systems like Linux, MacOS, Windows, etc.

s s
‘ -’(

HT TP Server coe

e Microsoft Internet Information Services (IIS): IIS (Internet Information
Services) is a high performing web server developed by Microsoft. It is
strongly united with the operating system and is therefore relatively easier
to administer. It is developed by Microsoft, it has a good customer support
system which is easier to access if we encounter any issue with the server.
It has all the features of the Apache HTTP Server except that it is not an
open-source software and therefore its code is inaccessible which means
that we cannot make changes in the code to suit our needs. It can be easily

installed in any Windows device.

-- Microsoft
= us

e Lighttpd: Lighttpd is pronounced as ‘Lightly’. It currently runs about 0.1
percent of the world’s websites. Lighttpd has a small CPU load and is
therefore comparatively easier to run. It has a low memory footprint and
hence in comparison to the other web servers, requires less memory space
to run which is always an advantage. It also has speed optimizations which
means that we can optimize or change its speed according to our
requirements. It is an open-source software which means that we can
access its code and add changes to it according to our needs and then
upload our own module (the changed code).

"T'

LIGHT T}

3F

13

Q

2.2 JAVASCRIPT IN THE DESKTOP WITH NODE JS
What is Node.JS?

Node.js is an open-source, cross-platform JavaScript runtime
environment that allows developers to run JavaScript code on the server side.
Created by Ryan Dahl in 2009, Node.js has revolutionized server-side
programming by offering an efficient, event-driven, and non-blocking I/O model.

It’s a powerful tool used for various types of projects. Let’s explore some key
aspects:

o JavaScript Runtime: Node.js runs on the V8 JavaScript engine, which
is also the core engine behind Google Chrome.

o Single Process Model: A Node.js application operates within a single
process, avoiding the need to create a new thread for every request.

o Asynchronous I/O: Node.js provides a set of asynchronous I/O
primitives in its standard library. These primitives prevent JavaScript code
from blocking, making non-blocking behavior the norm.

o Concurrency Handling: Node.js efficiently handles thousands of
concurrent connections using a single server. It avoids the complexities
of managing thread concurrency, which can lead to bugs.

https://www.geeksforgeeks.org/nodejs/
https://www.geeksforgeeks.org/javascript/
https://www.geeksforgeeks.org/server-side-client-side-programming/
https://www.geeksforgeeks.org/server-side-client-side-programming/

o JavaScript Everywhere: Frontend developers familiar with JavaScript
can seamlessly transition to writing server-side code using Node.js.

o ECMAScript Standards: Node.js supports the latest ECMAScript
standards. You can choose the version you want to use, independent of
users’ browser updates.

Why Node.JS?

Node.js is used to build back-end services like APIs like Web App, Mobile App
or Web Server. A Web Server will open a file on the server and return the content
to the client. It’s used in production by large companies such as Paypal, Uber,
Netflix, Walmart, and so on.

Reasons to Choose Node.js

« Easy to Get Started: Node.js is beginner-friendly and ideal for
prototyping and agile development.

o Scalability: It scales both horizontally and vertically.
« Real-Time Web Apps: Node.js excels in real-time synchronization.

« Fast Suite: It handles operations quickly (e.g., database access, network
connections).

o Unified Language: JavaScript everywhere—frontend and backend.

« Rich Ecosystem: Node.js boasts a large open-source library and supports
asynchronous, non-blocking programming.

PHP and ASP handling file requests:

Send Task -> Waits -> Returns -> Ready for Next Task
Node.js handling file request:

Send Task -> Returns -> Ready for Next Task

Node.js takes requests from users, processes those requests, and returns responses
to the corresponding users, there is no Wait for open and read file phase in
Node.js.

Basic Concepts of Node.JS

The following diagram depicts some important parts of Node.js that are useful
and help us understand it better.

Node.js Example to Create Web Server

It is the basic code example to create node.js server.
// Tmporting the http module

const http = require('http");

// Creating a server

const server = http.createServer((req, res) = {
// Setting the content type to HTML
res.writeHead(200, {

'Content-Type": 'text/html'

3)s

// Sending the HTML response
res.end('<hl1>Hello GFG</h1>");

$)s

// Listening on port 3000

const PORT = 3000;
server.listen(PORT, () => {
console.log(*Server running at http://localhost:$ {PORT}/");

5);
Output:

< & G localhost:32000

Hello GFG

Example of Node.js Server Output

Code Explaination:
o We use the HTTP module to create an HTTP server.
o The server listens on the specified port and hestname.

« When a new request arrives, the callback function handles it by setting the
response status, headers, and content.

How Node.JS Works?

Node.js accepts the request from the clients and sends the response, while
working with the request node.js handles them with a single thread. To operate
I/O operations or requests node.js use the concept of threads. Thread is a sequence
of instructions that the server needs to perform. It runs parallel on the server to
provide the information to multiple clients. Node.js is an event loop single-
threaded language. It can handle concurrent requests with a single thread without
blocking it for one request.

Advantages of Node.JS

« Easy Scalability: Easily scalable the application in both horizontal and
vertical directions.

Real-time web apps: Node.js is much more preferable because of faster
synchronization. Also, the event loop avoids HTTP overloaded for Node.js
development.

Fast Suite: NodeJS acts like a fast suite and all the operations can be done
quickly like reading or writing in the database, network connection, or file
system

Easy to learn and code: NodeJS is easy to learn and code because it uses
JavaScript.

Advantage of Caching: It provides the caching of a single module.
Whenever there is any request for the first module, it gets cached in the
application memory, so you don’t need to re-execute the code.

What is Node.JS file?

Node.js files contain tasks that handle file operations like creating, reading,
deleting, etc., Node.js provides an inbuilt module called FS (File System).

Application of Node.JS

Node.js is suitable for various applications, including:

Real-time chats

Complex single-page applications
Real-time collaboration tools
Streaming apps

JSON APIs

Common Use Cases of Node.JS

Node.js is versatile and finds applications in various domains:

1. Web Servers: Node.js excels at building lightweight and efficient web

servers. Its non-blocking I/O model makes it ideal for handling concurrent
connections.

. APIs and Microservices: Many companies use Node.js to create RESTful

APIs and microservices. Express.js simplifies API development.

Real-Time Applications: Node.js shines in real-time scenarios like chat
applications, live notifications, and collaborative tools. Socket.io facilitates
real-time communication.

https://www.geeksforgeeks.org/node-js-file-system/

Single-Page Applications (SPAs): SPAs benefit from Node.js for server-
side rendering (SSR) and handling API requests.

Streaming Services: Node.js is well-suited for streaming data, whether it’s
video, audio, or real-time analytics.

Node.JS Ecosystem

Node.js has a vibrant ecosystem with a plethora of libraries, frameworks, and
tools. Here are some key components:

1. npm (Node Package Manager): npm is the default package manager for

Node.js. It allows developers to install, manage, and share reusable code
packages (called modules). You can find thousands of open-source
packages on the npm registry.

Express.js: Express is a popular web application framework for Node.js.
It simplifies routing, middleware handling, and request/response
management. Many developers choose Express for building APIs, web
servers, and single-page applications.

. Socket.io: For real-time communication, Socket.io is a go-to library. It

enables bidirectional communication between the server and clients using
WebSockets or fallback mechanisms.

Mongoose: If you’re working with MongoDB (a NoSQL database),
Mongoose provides an elegant way to model your data and interact with
the database. It offers schema validation, middleware, and query building.

2.3 NODE PACKAGE MANAGER

NPM (Node Package Manager) 1s a package manager for Node.js modules. It
helps developers manage project dependencies, scripts, and third-party libraries.
By installing Node.js on your system, NPM is automatically installed, and ready
to use.

It is primarily used to manage packages or modules—these are pre-built
pieces of code that extend the functionality of your Node.js application.

The NPM registry hosts millions of free packages that you can download
and use in your project.

NPM is installed automatically when you install Node.js, so you don’t need
to set it up manually.

How to Use NPM with Node.js?

https://www.geeksforgeeks.org/node-js-npm-node-package-manager/
https://www.geeksforgeeks.org/express-js/
https://www.geeksforgeeks.org/introduction-to-sockets-io-in-node-js/
https://www.geeksforgeeks.org/mongodb-tutorial/
https://www.geeksforgeeks.org/nodejs/

To start using NPM in your project, follow these simple steps
Step 1: Install Node.js and NPM

First, you need to install Node.js. NPM is bundled with the Node.js installation.
You can follow our article to Install the Node and NPM- How to install Node on

your system
Step 2: Verify the Installation

After installation, verify Node.js and NPM are installed by running the following
commands in your terminal:

node Y
npm -v

These commands will show the installed versions of Node.js and NPM.

: cd Desktop

Desktop
§ cd GeeksForGeeks

~/Desktop/GeeksForGeeks
f npm -w
5. 7.l

~/Desktop/GeeksForGeeks

NodeJS NPM Version

Step 3: Initialize a New Node.js Project

In the terminal, navigate to your project directory and run:
npm init -y

This will create a package.json file, which stores metadata about your project,
including dependencies and scripts.

Step 4: Install Packages with NPM

To install a package, use the following command
npm install <package-name>

For example, to install the Express.js framework
npm install express

This will add express to the node _modules folder and automatically update the
package.json file with the installed package information.

https://www.geeksforgeeks.org/install-node-js-windows-macos-linux/
https://www.geeksforgeeks.org/install-node-js-windows-macos-linux/

Step 5: Install Packages Globally

To install packages that you want to use across multiple projects, use the -g flag:
npm install -g <package-name>

Step 6: Run Scripts

You can also define custom scripts in the package.json file under the “scripts”
section. For example:

{
"scripts": {
"start": "node app.js"

b
b

Then, run the script with
npm start
Using NPM Package in the project
Create a file named app.js in the project directory to use the package
/lapp.js
const express = require('express');//import the required package
const app = express();
app.get('/', (req, res) => {
res.send("Hello, World!");
});
app.listen(3000, () => {
console.log('Server running at http://localhost:3000");

§);
« express() creates an instance of the Express app.

o app.get() defines a route handler for HTTP GET requests to the root (/)
URL.

« res.send() sends the response “Hello, World!” to the client.

« app.listen(3000) starts the server on port 3000, and console.log() outputs
the server URL.

http://localhost:3000/
https://www.geeksforgeeks.org/steps-to-create-an-express-js-application/

Now run the application with
node app.js

Visit http://localhost:3000 in your browser, and you should see the message:
Hello, World!

Managing Project Dependencies
1. Installing All Dependencies

In a Node.js project, dependencies are stored in a package.json file. To install all
dependencies listed in the file, run:

npm install

This will download all required packages and place them in the node modules
folder.

2. Installing a Specific Package

To install a specific package, use:

npm install <package-name>

You can also install a package as a development dependency using:
npm install <package-name> --save-dev

Development dependencies are packages needed only during development, such
as testing libraries.

To install a package and simultaneously save it in package.json file (in case using
Node.js), add —save flag. The —save flag is default in npm install command so it
is equal to npm install package name command.

Example:
npm install express --save
Usage of Flags:
« —save: flag one can control where the packages are to be installed.

« —save-prod : Using this packages will appear in Dependencies which is
also by default.

» —save-dev : Using this packages will get appear in devDependencies and
will only be used in the development mode.

https://www.geeksforgeeks.org/node-js-package-json/

Note: If there is a package.json file with all the packages mentioned as
dependencies already, just type npm install in terminal

3. Updating Packages
You can easily update packages in your project using the following command
npm update

This will update all packages to their latest compatible versions based on the
version constraints in the package.json file.

To update a specific package, run

npm update <package-name>

4. Uninstalling Packages

To uninstall packages using npm, follow the below syntax:
npm uninstall <package-name>

For uninstall Global Packages

npm uninstall package name -g

Popular NPM Packages

NPM has a massive library of packages. Here are a few popular packages that can
enhance your Node.js applications:

o Express: A fast, minimal web framework for building APIs and web
applications.

o Mongoose: A MongoDB object modeling tool for Node.js.

o Lodash: A utility library delivering consistency, customization, and
performance.

o Axios: A promise-based HTTP client for making HTTP requests.
o React: A popular front-end library used to build user interfaces
2.4 SERVING FILES WITH HTTP MODULES

Node.js HTTP module allows you to create and manage web servers and handle
HTTP requests and responses. Unlike other frameworks like Express.js, the
HTTP module is built directly into Node.js, meaning you don’t need to install any
additional packages. It provides low-level control over HTTP requests and
responses.

https://www.geeksforgeeks.org/express-js/
https://www.geeksforgeeks.org/mongoose-tutorial/
https://www.geeksforgeeks.org/lodash/
https://www.geeksforgeeks.org/axios-in-react-a-guide-for-beginners/
https://www.geeksforgeeks.org/react/

What is HTTP Module?

The HTTP module in Node.js provides functionality to create and manage HTTP
servers and clients. It includes methods to handle incoming requests, send
responses, and interact with HTTP headers and status codes. Since it’s a built-in
module, you can use it without installing any third-party libraries.

The HTTP module is fundamental to Node.js and can be used as the backbone for
web servers, though many developers prefer to use higher-level frameworks like
Express.js to simplify the process.

Syntax:
const http = require('http');
Creating Servers:

The HTTP module allows you to create a server using the http.createServer()
method, which listens for incoming requests and handles them using a callback
function.

Handling Requests:

You can handle HTTP requests and responses by accessing the request and
response objects within the callback function of createServer(). The request
object contains data from the client, while the response object is used to send data
back.

Making Requests:

The HTTP module also provides methods for making HTTP requests from a
Node.js application. You can use http.request() or http.get() to send requests to
other servers and

Features
« Easily create and configure HTTP servers with custom logic.
o Handle HTTP methods, headers, and data streams.
« No need for external libraries to handle HTTP in Node.js.

// Filename: max.js

const http = require(‘http');

https://www.geeksforgeeks.org/nodejs/

// Create a server

http.createServer((request, response) => {

// Sends a chunk of the response body

response.write('Hello World!");

// Signals the server that all of

// the response headers and body
// have been sent
response.end();

}.listen(3000); // Server listening on port 3000

console.log("Server started on port 3000");
Step to run this program: Run this max.js file using the below command:
node max.js

Output:

Hello World!

Node.js HTTP Module

To make requests via the HTTP module http.request() method is used.
Syntax:

http.request(options|, callback])

2.5 INTRODUCTION TO EXPRESS

Express is a small framework that sits on top of Node.js’s web server
functionality to simplify its APIs and add helpful new features.It makes it easier
to organize your application’s functionality with middle ware and routing; it adds
helpful utilities to Node.js’s HTTP objects;it facilitates the rendering of dynamic
HTTP objects.

Express is a part of MEAN stack, a full stack JavaScript solution used in building
fast, robust, and maintainable production web applications.

MongoDB(Database)

ExpressJS(Web Framework)
AngularJS(Front-end Framework)
NodeJS(Application Server)

Installing Express on Windows (WINDOWS 10)

Assuming that you have installed node.js on your system, the following steps
should be followed to install express on your Windows:

STEP-1: Creating a directory for our project and make that our working directory.
$ mkdir gfg

$ cd gfg

STEP-2: Using npm init command to create a package.json file for our project.
$ npm init

This command describes all the dependencies of our project. The file will be
updated when adding further dependencies during the development process, for
example when you set up your build system.

CAWINDOWS\system32\cmd.exe

"name”: "rohit-aggarwal”,
"version”: "1.0.0",
"main": "index.js",
"scripts”: {
"test": "echo \"Error: no test specified\" && exit 1"

“author™: "*,

"license”: "ISC",
"description™: ""

s this OK? (yes) yes

Keep pressing enter and enter “yes/no” accordingly at the terminus line.

STEP-3: Installing Express
Now in your gfg(name of your folder) folder type the following command line:

$ npm install express --save

em32\cmd.exe - m] X

soft Windows [Version 10.0.17763.379]
018 Microsoft Corporation. All rights reserved.

ers\ROHIT AGGARWAL>cd gfg

ers\ROHIT AGGARWAL\gfg>npm install exp
created a lockfile as package-loc You should commit thi
rohit-aggarwal@1.0.0 No description
rohit-aggarwal@1.0.0 No repos

express@4.16.4
: 48 packages from 36 contributors and audited 121 packages in 14.83s
found @ vulnerabilities

C:\Users\ROHIT AGGARWAL\gfg>

NOTE- Here “WARN” indicates the fields that must be entered in STEP-2.
STEP-4: Verify that Express.js was installed on your Windows:

To check that express.js was installed on your system or not, you can run the
following command line on cmd:

C:\Users\Admin\gfg\node modules>npm --version express

EN CAWINDOWS\system32\cmd.exe — O b4

ers\ROHIT AGGARWAL\gfg\node_modules>npm --version express

C:\Users\ROHIT AGGARWAL‘\gfg\node_modules:

The version of express.js will be displayed on successful installation.

2.6 SERVER SIDE RENDERING WITH TEMPLATING ENGINES

Server-side rendering involves generating HTML on the server and sending it to
the client, as opposed to generating it on the client side using JavaScript. This
improves initial load time, and SEO, and enables dynamic content generation.
Express is a popular web application framework for NodeJS, and EJS is a simple
templating language that lets you generate HTML with plain JavaScript

Basic Approach:

« Using Express with EJS templating engine to render HTML on the server
side.

« In this approach, we set up an Express server with EJS as the templating
engine. We define routes and render EJS templates directly. Data can be
passed to the templates as variables.

Advanced Approach (with Data Fetching):

« Utilizing asynchronous data fetching within Express routes to dynamically
render content with EJS.

« This approach extends the basic one by incorporating asynchronous data
fetching within Express routes. This could involve fetching data from
databases, external APIs, or other sources before rendering the EJS
templates.

https://www.geeksforgeeks.org/html-tutorial/
https://www.geeksforgeeks.org/javascript/
https://www.geeksforgeeks.org/express-js/
https://www.geeksforgeeks.org/nodejs/

Steps to Create Application (And Installing Required Modules):
Step 1: Create a new directory for your project:

mkdir express-ssr

Step 2: Navigate into the project directory:

cd express-ssr

Step 3: Initialize npm (Node Package Manager) to create a package.json file:

npm init -y
Step 4: Install required modules (Express and EJS) using npm:
npm install express ejs

Project Structure:

“ EeXpress-ssr
» node_modules
v views
<> dynamic.ejs
<> index.ejs
15 index.s

{} package-lock.json

{} package.json

The updated dependencies in package.json file will look like:

"dependencies": {
"ejs": "A3.1.9",
"express': "~4,18.3"

}

Example: Below is an example of ServerSide Rendering With Express and EJS

Templates.
/Iviews/index.ejs
<IDOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">

—n

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Express SSR with EJS</title>

</head>

<body>
<h1>Hello, <%= name %>!</h1>

</body>

</html>

Start your server using the following command.

node index.js
“ C @ localhosi3000 T

Hello, World!

2.7 STATIC FILES

Introduction

A Node.js framework, Express facilitates data in a server and includes rendering
your static files on the client-side such as images, HTML, CSS, and JavaScript.

Step 1 — Setting up Express

To begin, run the following in your terminal:
Create a new directory for your project named express-static-file-tutorial:

mkdir express-static-file-tutorial

https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#introduction
https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-1-setting-up-express

Change into your new directory:

cd express-static-file-tutorial

Initialize a new Node project with defaults. This will set a package.json file to
access your dependencies:

npm init -y

Create your entry file, index.js. This is where you will store your Express server:
touch index.js

Install Express as a dependency:
npm install express --save

Within your package.json, update your start script to include node and your
index js file.

package.json
"name": "express-static-file-tutorial",
"version": "1.0.0",

", nmn

"description": "",
"main": "index.js",
"scripts": {

"start": "node index.js"
s
"keywords": [],
"author": "Paul Halliday",
"license": "MIT"

b

This will allow you to use the npm start command in your terminal to launch your
Express server.

Step 2 — Structuring Your Files

To store your files on the client-side, create a public directory and include an
index.html file along with an image. Your file structure will look like this:

express-static-file-tutorial
- index.js
- public
- shark.png
|- index.html
Now that your files are set up let’s begin your Express server.

Step 3 — Creating Your Express Server

In your index.js file, require in an Express instance and implement a GET request:
index.js

const express = require('express');

const app = express();

const PORT = 3000;

app.get('/', (req, res) => {
res.send('Hello World!");

s

app.listen(PORT, () => console.log('Server listening on port: ${PORT}"));
Now let’s tell Express to handle your static files.

Step 4 — Serving Your Static Files

Express provides a built-in method to serve your static files:
app.use(express.static('public'));

When you call app.use(), you’re telling Express to use a piece of middleware.
Middleware 1s a function that Express passes requests through before sending
them to your routing functions, such as your app.get('/') route. express.static()
finds and returns the static files requested. The argument you pass into

https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-2-structuring-your-files
https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-3-creating-your-express-server
https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-4-serving-your-static-files
https://www.digitalocean.com/community/tutorials/nodejs-creating-your-own-express-middleware

express.static() is the name of the directory you want Express to serve files. Here,
the public directory.

In index.js, serve your static files below your PORT variable. Pass in your public
directory as the argument:

index.js
const express = require('express');
const app = express();

const PORT = 3000;

app.use(express.static('public'));

app.get('/', (req, res) => {
res.send("Hello World!");

s

app.listen(PORT, () => console.log("Server listening on port: ${PORT}"));
With your Express server set, let’s focus on the client-side.

Step 5 — Building Your Web Page

Navigate to your index.html file in the public directory. Populate the file with
body and image elements:

[label index.html]
<htmlI>
<head>
<title>Hello World!</title>
</head>
<body>
<h1>Hello, World!</h1>

https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-5-building-your-web-page

</body>
</html>

Notice the image element source to shark.png. Since you’ve served the public
directory through Express, you can add the file name as your image source’s
value.

Step 6 — Running Your Project

In your terminal, launch your Express project:

npm start

Server listening on port: 3000

Open your web browser, and navigate to http://localhost:3000. You will see your
project:

& C @ localhost:3000

Hello, World!

9,

e,

Conclusion

Express offers a built-in middleware to serve your static files and modularizes
content within a client-side directory in one line of code.

https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#step-6-running-your-project
https://www.digitalocean.com/community/tutorials/nodejs-serving-static-files-in-express#conclusion

2.8 ASYNC AND AWAIT

Async and Await in JavaScript is used to simplify handling asynchronous
operations using promises. By enabling asynchronous code to appear
synchronous, they enhance code readability and make it easier to manage
complex asynchronous flows.

async function fetchData()

{

const response = await fetch("https://jsonplaceholder.typicode.com/posts/1");
const data = await response.json();

console.log(data);

b
fetchData();

Output:
{

userld: 1,
1d: 1,
title: el
body:}

Syntax:

async function functionName() {

try {

const result = await some AsyncFunction();
console.log(result);

} catch (error) {

console.error("Error:", error.message);

b
b

Async Function

The async function allows us to write promise-based code as if it were
synchronous. This ensures that the execution thread is not blocked. Async
functions always return a promise. If a value is returned that is not a promise,
JavaScript automatically wraps it in a resolved promise.

Syntax:

async function myFunction() {
return "Hello";

}

const getData = async () => {
let data = "Hello World";
return data;

b
getData().then(data => console.log(data));

Output
Hello World
Await Keyword

The await keyword is used to wait for a promise to resolve. It can only be used
within an async block. Await makes the code wait until the promise returns a
result, allowing for cleaner and more manageable asynchronous code.

const getData = async () => {
let y = await "Hello World";
console.log(y);

}

console.log(1);

getData();

console.log(2);

Output
Hello World

o The async keyword transforms a regular JavaScript function into an
asynchronous function, causing it to return a Promise.

« The await keyword is used inside an async function to pause its execution
and wait for a Promise to resolve before continuing.

Error Handling in Async/Await

JavaScript provides predefined arguments for handling promises: resolve and
reject.

o resolve: Used when an asynchronous task is completed successfully.

o reject: Used when an asynchronous task fails, providing the reason for
failure.

async function fetchData() {
try {
let response = await fetch('https://api.example.com/data');
let data = await response.json();
console.log(data);
} catch (error) {

console.error('Error fetching data:', error);

}

b
Advantages of Async and Await

o Improved Readability: Async and Await allow asynchronous code to be
written in a synchronous style, making it easier to read and understand.

o Error Handling: Using try/catch blocks with async/await simplifies error
handling.

o Avoids Callback Hell: Async and Await prevent nested callbacks and
complex promise chains, making the code more linear and readable.

« Better Debugging: Debugging async/await code is more intuitive since it
behaves similarly to synchronous code.

2.9 FETCHING JSON FROM EXPRESS

The express.json() function is a built-in middleware in Express that is used for
parsing incoming requests with JSON payload. The express.json middleware is
important for parsing incoming JSON payloads and making that data available in
the req.body or further processing within the routes. Without using express.json,
Express will not automatically parse the JSON data in the request body.

By using the express.json middleware, you can handle POST, PUT, or PATCH
requests that send JSON data from the client to the server.

Syntax:
express.json([options])

Parameters: The options parameter has various properties like inflate, limit,
type, etc.

Return Value: It returns an Object.
How express.json() Works?

The primary function of express.json() is to parse requests with a Content-Type
header of application/json. Once parsed, the resulting data is stored in the
req.body, allowing easy access to the JSON content sent from the client.

Steps To Use express.json() Function

Step 1: Create a Node.js application using the following command.

mkdir nodejs
cd nodejs
npm init -y

Step 2: Install the required dependencies.
npm install express
Step 3: Create the required files and start the server.
node index.js
Project Structure

v Nodejs

> node_modules
JS indexjs

{} package-lockjson

{} package,json

Project Structure
Example 1: Below is the code example of the express.json().

// Filename - index.js

const express = require('express');
const app = express();

const PORT = 3000;

app.use(express.json());

app.post('/', function (req, res) {
console.log(req.body.name)

res.end();

})

app.listen(PORT, function (err) {
if (err) console.log(err);

console.log("Server listening on PORT", PORT);
$);

Steps to run the program: Run the index.js file using the below command:
node index.js

Output: Now make a POST request to http://localhost:3000/ with header set to
‘content-type: application/json’ and body {“name”:”GeeksforGeeks”}, then
you will see the following output on your console:

Server listening on PORT 3000
GeeksforGeeks

Example 2: Below is the code example of the express.json().

// Filename - index.js

const express = require('express');
const app = express();

const PORT = 3000;

//' Without this middleware

// app.use(express.json());

app.post('/', function (req, res) {
console.log(req.body.name)

res.end();

})

app.listen(PORT, function (err) {

if (err) console.log(err);

console.log("Server listening on PORT", PORT);
$);

Steps to run the program: Run the index.js file using the below command:
node index.js

Output: Now make a POST request to http://localhost:3000/ with header set to
‘content-type: application/json’ and body {“name”:”GeeksforGeeks”}, then
you will see the following output on your console:

Server listening on PORT 3000
TypeError: Cannot read property 'name' of undefined

Benefits of Using express.json()

« JSON Parsing Made Simple: The middleware automatically parses
incoming JSON data, making it available in req.body. This eliminates the
need to manually parse the data, reducing complexity in your application
logic.

Seamless Integration: It integrates easily into any Express application and
handles all JSON-related requests without requiring additional
configuration or packages.

Handling JSON Payloads: It enables easy handling of JSON payloads
sent in POST, PUT, or PATCH requests, which is critical for interacting
with modern front-end applications or APIs.

