
UNIT V  

Algorithms for Streaming and Big Data 

Introduction 

Modern data science systems deal with continuous, massive, fast-moving data known as data 

streams. 

Examples include: 

 Website logs 

 Sensor data 

 Clickstream data 

 Telemetry data 

Traditional algorithms fail because: 

 Data size is too large 

 Data arrives continuously 

 Storing all data is impossible 

Streaming and Big Data algorithms are designed to work with limited memory, one pass, and 

approximate answers. 

 

Data Stream Model 

Introduction 

The Data Stream Model is a computational model used to process continuous, high-speed, 

and massive data that arrives sequentially over time. 

In this model: 

 Data elements arrive one by one 

 The total data size may be infinite 

 Storing the entire data is not feasible 

Hence, algorithms must process data in real time using limited memory. 

 

Why Data Stream Model is Needed 

Traditional algorithms assume: 

 All data fits in memory 



 Multiple passes over data are possible 

❌ These assumptions fail for: 

 Web logs 

 Sensor data 

 Network traffic 

 Clickstream data 

✔ The data stream model addresses these challenges. 

 

Key Characteristics 

 Single or few passes over data 

 Limited memory 

 Fast processing 

 Approximate answers 

 Order-sensitive 

 

Formal Definition 

A data stream is a sequence: 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 

 

where: 

 Each element must be processed immediately 

 Past elements cannot be revisited 

 

Constraints in Data Stream Model 

1. Memory constraint – cannot store entire stream 

2. Time constraint – each element processed quickly 

3. Pass constraint – usually one-pass 

 

6. Types of Data Streams 



1. Insert-only stream 

(elements only added) 

2. Turnstile stream 

(elements added and removed) 

3. Sliding window stream 

(only recent data considered) 

 

Approximation in Data Streams 

Exact answers are often impossible. 

Data stream algorithms provide: 

 Approximate results 

 Error bounds 

 High probability correctness 

 

Common Data Stream Algorithms 

Algorithm Purpose 

Count-Min Sketch Frequency estimation 

Reservoir Sampling Random sampling 

Flajolet–Martin Distinct counting 

Misra–Gries Frequent elements 

Approximate Quantiles Percentile estimation 

 

Applications 

 Log processing 

 Clickstream analysis 

 Network monitoring 

 IoT telemetry 

 Financial tick data 

 

Advantages 



✔ Scalable 

✔ Memory efficient 

✔ Real-time processing 

 

12. Limitations 

✖ Approximate results 

✖ Algorithm design complexity 

✖ Sensitive to parameter tuning 

 

One-Pass Algorithms 

Meaning 

A one-pass algorithm: 

 Reads each data element only once 

 Does not revisit previous elements 

Why One-Pass? 

 Streams cannot be stored 

 Multiple passes are infeasible 

Examples 

 Counting approximate frequencies 

 Finding maximum/minimum 

 Estimating distinct elements 

Advantages 

✔ Low memory 

✔ Fast processing 

✔ Real-time capability 

 

Count-Min Sketch (CMS) 

Introduction 

The Count–Min Sketch is a probabilistic data stream algorithm used to estimate the 

frequency of elements in massive data streams using very small memory. 



It is widely used when: 

 The stream is too large to store 

 Exact frequency counting is infeasible 

 Approximate answers with error bounds are acceptable 

 

Problem Statement 

Given a data stream: 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 

 

Estimate the frequency of any element 𝑥using: 

 One pass 

 Limited memory 

 

Key Idea 

 Use multiple hash functions 

 Maintain a 2D array of counters 

 Hash collisions may occur, but taking the minimum reduces error 

 

Data Structure 

Structure 

 A table of size 𝑑 ×𝑤 

 𝑑= number of hash functions (rows) 

 𝑤= number of counters per row (columns) 

Each row has an independent hash function. 

 

Working of Count–Min Sketch 

Step 1: Initialization 

 Initialize all counters to 0 

 



Step 2: Update (Insert Element) 

For each incoming element 𝑥: 

1. Apply each hash function ℎ𝑖(𝑥) 

2. Increment the counter at position (𝑖, ℎ𝑖(𝑥)) 

 

Step 3: Query (Estimate Frequency) 

To estimate frequency of element 𝑥: 

freq(𝑥) = min⁡
𝑖=1

𝑑

table[𝑖][ℎ𝑖(𝑥)] 

 

 

Why Take the Minimum? 

 Collisions can only increase counts 

 The minimum value gives the closest estimate to the true frequency 

 

Example 

Stream 

a, b, a, c, a, b 

Estimated Frequency 

Element Actual Estimated 

a 3 3 

b 2 2 

c 1 1 

(Approximation depends on hash collisions) 

 

Error Guarantee 

With appropriate parameters: 

Estimated frequency ≤ True frequency + 𝜖𝑁 

 

With probability: 



1 − 𝛿 

 

Where: 

 𝑁= total stream size 

 𝜖= error factor 

 𝛿= failure probability 

 

Parameter Selection  

𝑤 = ⌈𝑒/𝜖⌉ 

𝑑 = ⌈ln⁡(1/𝛿)⌉ 

 

 

Advantages 

✔ One-pass algorithm 

✔ Very memory efficient 

✔ Fast updates and queries 

✔ Simple implementation 

 

Limitations 

✖ Overestimates frequency 

✖ Approximate results 

✖ Depends on hash quality 

 

Applications 

 Network traffic monitoring 

 Log processing 

 Query frequency estimation 

 Clickstream analysis 

 Heavy hitter detection 

 

Reservoir Sampling 



What is Reservoir Sampling? 

Reservoir Sampling is a randomized algorithm used to select k random items from a stream 

of unknown size n (or very large n) in a single pass. 

 Key Idea: You don’t know the total number of items in advance, so you can’t store 

everything to sample later. Reservoir sampling allows you to maintain a representative 

sample while reading the data sequentially. 

 Applications: 

o Selecting random logs from a large log file. 

o Randomly picking users from a stream of events. 

o Big data analytics when storing all data is impossible. 

 

Problem Setup 

 Input: A stream of items 𝑆 = 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 

 Goal: Pick k items uniformly at random from n, without knowing n in advance. 

 Output: A random sample of k items, each with probability 
𝑘

𝑛
of being included. 

 

Algorithm (for k = 1) 

Let’s start with the simplest case: pick 1 item from a stream. 

1. Initialize res = first item of the stream. 

2. For the i-th item (i ≥ 2): 

o Pick it with probability 
1

𝑖
. 

o If chosen, replace res with the current item. 

3. Continue until the end of the stream. 

4. res will now be 1 item chosen uniformly at random from the stream. 

Why it works: Each item has a probability 1/𝑖of replacing the current item. By induction, 

every item has equal probability 1/𝑛at the end. 

 

Algorithm (for k > 1) 

If we want k items: 

1. Initialize an array reservoir[1..k] with the first k items of the stream. 



2. For the i-th item (i > k): 

o Pick a random index j from 1 to i. 

o If j ≤ k, replace reservoir[j] with the i-th item. 

3. Continue until the end of the stream. 

4. The reservoir array now contains k random items, each with equal probability 𝑘/𝑛. 

 

Example 

Suppose you want k = 2 samples from the stream [10, 20, 30, 40]. 

1. Take first two items: reservoir = [10, 20]. 

2. Item 3 (30): 

o Pick random j ∈ [1,3]. Suppose j=2 → replace reservoir[2] → [10, 30]. 

3. Item 4 (40): 

o Pick random j ∈ [1,4]. Suppose j=3 → do nothing (j>k). 

4. Final reservoir = [10, 30] (one of the possible combinations with equal probability). 

 

Properties 

 Single-pass algorithm – suitable for streaming data. 

 Memory efficient – only need to store k items. 

 Uniform probability – each item has exactly k/n chance of being selected. 

 

Use Cases 

1. Big Data / Streaming 

o Sampling logs or events when n is huge. 

2. Machine Learning 

o Creating a random subset for training without loading all data. 

3. Online Systems 

o Randomly selecting users for A/B testing from a live event stream. 

 

Approximate Quantiles 



What are Quantiles? 

Quantiles are values that divide a dataset into equal-sized intervals. They help summarize the 

distribution of data. 

 Median = 0.5-quantile (divides data into two equal parts) 

 Quartiles = divide data into 4 equal parts 

 Deciles = divide data into 10 equal parts 

 Percentiles = divide data into 100 equal parts 

Formally: 

 The φ-quantile (0 ≤ φ ≤ 1) is the value x such that φ fraction of data ≤ x. 

 

Why Approximate Quantiles? 

In big data or streaming data, computing exact quantiles is costly because: 

 Data size n may be huge or infinite (streaming data). 

 Sorting the whole data to get exact quantiles is impractical. 

Solution: Use approximate quantiles algorithms that: 

 Provide a value close to the true quantile 

 Use limited memory 

 Work in one pass over the data 

 

Problem Statement 

Given: 

 Stream of n numbers: x1, x2, ..., xn 

 Quantile φ (0 ≤ φ ≤ 1) 

Goal: Find a value v such that the rank of v is approximately φ*n, i.e., 

(𝜑 − 𝜀) ∗ 𝑛 ≤ 𝑟𝑎𝑛𝑘(𝑣) ≤ (𝜑 + 𝜀) ∗ 𝑛 

 

Where ε is the tolerance (error bound). 

 

Basic Approaches 

Sorting (Exact) 



 Store all data → sort → pick quantiles 

 Memory & time intensive → O(n log n) 

 Not feasible for streams 

 

Reservoir Sampling + Sorting (Approximate) 

 Maintain a random sample of the stream (size k) 

 Sort the sample → pick φ-quantile from sample 

 Works well if k << n 

 Memory-efficient, but approximation depends on sample size 

 

GK Algorithm (Greenwald-Khanna) 

One of the most popular streaming algorithms for approximate quantiles: 

 Maintains a summary of the stream: list of tuples (value, g, δ) 

o value = observed number 

o g = gap (how many elements between previous tuple and this one) 

o δ = allowable error in rank 

 Ensures that the rank of any value can be estimated within ε*n 

 Memory usage: O(1/ε * log(ε*n)) → very efficient 

 

Q-digest (for integers) 

 Works for integer streams 

 Uses tree-based summaries 

 Merges counts to compress data while maintaining approximate ranks 

 

Example (Approximate Median) 

Stream: [3, 1, 4, 1, 5, 9, 2, 6] 

Goal: Approximate 0.5-quantile (median) 

 Keep a sample of size 4 → [3, 1, 5, 2] 

 Sort sample → [1, 2, 3, 5] 



 Median ≈ 2.5 → close to exact median 3 

As the stream grows, the approximation becomes closer to the true quantile. 

 

Properties of Approximate Quantiles 

 Memory-efficient → only store summary or sample 

 Single-pass / streaming-friendly 

 ε-approximation guarantees that the error in rank is bounded 

 Can compute multiple quantiles simultaneously 

 

Applications 

1. Big Data Analytics: Percentiles of response times, log data, or transactions 

2. Monitoring Systems: Latency monitoring → approximate 95th percentile 

3. Databases: Fast percentile queries without full sorting 

4. Machine Learning: Feature binning, normalization 

 

Frequent Elements (Heavy Hitters) 

What are Frequent Elements (Heavy Hitters)? 

Frequent elements (or heavy hitters) are items in a data stream or dataset that appear more 

than a certain threshold. 

Formally: 

 Given a stream of elements: S = s1, s2, ..., sn 

 A frequency threshold φ (0 < φ ≤ 1) 

 Heavy hitters = items that appear more than φ*n times in the stream 

Example: 

 Stream: [a, b, a, c, a, b, d] 

 Threshold φ = 0.3 → 0.3 * 7 = 2.1 

 Heavy hitters: a (appears 3 times, > 2.1) 

 

Why Heavy Hitters? 



 In big data or streaming, storing all items to count frequencies is impractical. 

 Applications: 

o Detecting popular search queries in real-time 

o Monitoring network traffic for frequently accessed IPs 

o Identifying hot items in recommendation systems 

 

Challenges in Streams 

1. Unknown size (n) → cannot compute exact frequency threshold in advance 

2. Memory limitation → cannot store all distinct elements 

3. Single-pass requirement → must process each element once 

 

Algorithms for Frequent Elements 

Misra-Gries Algorithm (Counter-Based) 

Idea: Keep k counters to track potential heavy hitters. 

 Initialize k = 1/φ counters 

 For each incoming element x: 

1. If x is already in counters → increment its count 

2. Else if counter has empty slot → add x with count = 1 

3. Else → decrement all counters by 1 

 At the end, counters may contain all heavy hitters 

 Final pass: check actual frequencies of candidates 

Memory: O(1/φ) → very efficient 

Example: 

 Stream: [a, b, a, c, a, b, d] 

 φ = 0.3 → k = 3 counters 

 Final counters: {a:2, b:1, c:0} → heavy hitter = a 

 

Count-Min Sketch (Approximate, Hash-Based) 

 Uses hash functions and a 2D array to approximate counts 



 For each element, increment counters in hash-based rows 

 Query approximate count → error bounded by ε*n 

 Very memory-efficient → works well for high-speed streams 

 

Space-Saving Algorithm 

 Similar to Misra-Gries but always replaces the smallest counter if a new element 

arrives 

 Often more accurate than Misra-Gries 

 

Properties 

 Single-pass algorithms → suitable for streams 

 Memory-efficient → track only potential heavy hitters, not all elements 

 Approximate counts → some algorithms give approximate frequency with error 

bounds 

 

Applications 

1. Networking: Detect heavy IPs causing congestion 

2. Web analytics: Find trending search terms or hashtags 

3. E-commerce: Identify frequently sold products 

4. Fraud detection: Detect unusual transaction patterns 

 

Scalable MapReduce-like Algorithm Design 

What is MapReduce? 

A programming model for processing huge datasets in parallel. 

 

Phases 

1. Map – process input data and produce key-value pairs 

2. Shuffle – group values by key 

3. Reduce – aggregate results 

 



Why MapReduce? 

 Handles petabytes of data 

 Fault tolerant 

 Scalable 

 

Examples 

 Word count 

 Log aggregation 

 Click analysis 

 

Applications 

1.Log Processing 

What it is: 

 Systems and applications generate logs continuously: errors, user actions, server 

metrics. 

 Logs are often high-volume and unbounded, so storing all logs is impractical. 

How streaming algorithms help: 

Algorithm Application in Logs 

Reservoir Sampling Select a random subset of log entries for inspection or debugging 

without storing the entire log. 

Approximate 

Quantiles 

Monitor response times, request sizes, or latency. For example, 

approximate 95th percentile response time helps detect 

performance bottlenecks. 

Frequent Elements 

(Heavy Hitters) 

Identify the most frequent error codes or IPs causing failures in 

the system. 

Example: 

 Detect top 10 most frequent 500-error pages in a web server log in real-time. 

 

2. Clickstream Analysis 

What it is: 

 Clickstream = sequence of user actions (clicks, page visits) on a website or app. 



 Helps understand user behavior and improve UX or personalization. 

How streaming algorithms help: 

Algorithm Application in Clickstreams 

Reservoir Sampling Randomly select user sessions for A/B testing or behavior 

analysis. 

Approximate Quantiles Measure time spent on pages or scroll depth: approximate 

median or 90th percentile helps identify anomalies. 

Frequent Elements 

(Heavy Hitters) 

Track the most clicked pages, buttons, or search queries in 

real-time. 

Example: 

 Detect trending products or pages that users are clicking most frequently today. 

 

3. Telemetry / Sensor Data 

What it is: 

 Telemetry = continuous stream of measurements from devices (IoT, satellites, 

vehicles). 

 Data is high-velocity, high-volume, and often unbounded. 

How streaming algorithms help: 

Algorithm Application in Telemetry 

Reservoir Sampling Sample sensor readings to detect unusual events without 

storing all raw data. 

Approximate Quantiles Monitor temperature, pressure, or latency metrics: 

approximate percentiles help detect anomalies. 

Frequent Elements 

(Heavy Hitters) 

Detect sensors that frequently report unusual values, or most 

common events in a time window. 

Example: 

 In a smart city, detect the roads with the most frequent traffic congestion events in 

real-time using 

 

 


