
 LECTURE NOTES- MP&MC

 01

10. Operand addressing

An addressing mode is a method of specifying the data source or destination in an

instruction. There are 5 types of addressing modes is supported by 8051.

1. Register

2. Immediate

3. Direct (memory related)

4. Register Indirect (memory related)

5. Index register addressing

Register addressing mode

This addressing mode involves the use of registers to hold the data to be manipulated.

Examples:

MOV A, R0 ; Copy the contents of R0 int A

ADD A, R7 ; Add the contents of R7 to contents of A and the result is stored in A

Immediate addressing mode

In this addressing mode immediate data is specified in instruction as a source operand.

Examples:

MOV B, #40H ; load 40H into B register

MOV DPTR, #2000H ; load 2000H into DPTR

Direct addressing mode

As we know the on-chip RAM of 8051 is 128 byte, it can be accessed through memory address

from 00H to FF H. The allocations of 128 bytes are as follows.

1. RAM location 00H-1FH are assigned to register banks and stack

2. RAM location 20H-2FH is set aside as bit-addressable space to save single bit data.

3. RAM location 30H-7F is available as place to save bite-sized data.

Although the entire 128 bytes of RAM can be accessed through direct addressing mode, it is

most often used to access RAM location 30H-7FH. This is due to fact that register banks are

accessed through their names.

 LECTURE NOTES- MP&MC

 02

Examples:

MOV R4, 70H ; move the contents of RAM location 70H to R4.

MOV 56H, A ; save the content of A in RAM location 56H

PUSH 05 ; push R5 onto the stack

Register indirect addressing mode

In this mode the address (of 8bits) is indirectly specified in the instruction by the contents

of pointer. This addressing mode so called because the source operand is from the address

specified indirectly by another register in the instruction. The limitation is that only R0 and R1

register can be used in 8051 for indirect addressing. SFRs are directly accessible.

Examples

MOV R1, #55H ; load pointer R1=55H

MOV A, @R1 ; the content of pointer is transferred to A

Index registers addressing

Suppose we need to access external data RAM and external code space of on-chip ROM

16 bit address must be required. In this case we have to use DPTR. This mode is widely used in

accessing data elements of look-up table entries in the program ROM space of 8051.

Examples;

MOV DPTR, #0200H ; load DPTR with 0200

CLR A ; clear accumulator

MOVC A,@A+DPTR ; Move the content 0200 location into A

11. Instruction set
 The instruction set of 8051 can be classified into following group.

1. Data Transfer Instructions

2. Arithmetic Instructions

3. Logic Instructions

4. Boolean Variable manipulation Instructions

5. Program flow control (Processor and Machine control) Instructions

6. Interrupt flow Control instruction

 LECTURE NOTES- MP&MC

 03

12.1 Data Transfer Instruction

Three types of the data transfer can be done by move instruction. First type is transfer

within the internal RAM and SFRs, second type is transfer using code memory area (CODE) and

the third is using the external data memory X-DATA).

MOV instruction

 A MOV instruction means move (copy) the bits from one source to a destination.

Table 4.4 MOV instructions within the registers, internal RAM and SFRs in 8051

Instruction

(Mnemonic)

Action Addressing Length

in bytes

cycles

MOV A, Rn Move Rn into A Register 1 1

MOV Rn, A Move into Rn from A Register 1 1

MOV A, #data Move immediate 8-bit data into A Immediate 2 1

MOV Rn, #data Move into Rn the data. immediate 2 1

MOV A, direct Move byte at the direct address into A Direct 2 1

MOV Rn, direct Move from direct address into Rn Direct 2 2

MOV direct, A Move byte to the direct address form A Direct 2 1

MOV direct, Rn Move a byte to the direct address from Rn Direct 2 2

M OV direct, direct Move byte to the direct address from the
direct address

Direct 3 2

MOV direct, #data Move immediate data byte to the direct
address

Immediate 3 2

MOV a,@Ri Move into A the byte from the address
pointed by Ri

Indirect 2 2

MOV @Ri, A Move A into address pointed by Ri Indirect 1 1

MOV direct, @Ri Move into direct address from address
pointed by Ri

indirect 1 1

MOV @Ri, direct Move from the direct address to the address
poined by ri

Indirect 2 2

MOV @Ri, #data Move data ino address pointed by Ri immediate 2 2

MOV DPTR, data16 Mov e16 bit dat immediate 3 2

MOVC-type Instruction

It moves the 8-bit code from one source at the program memory (internal and external) to the

register A destination.

Table 4.5 MOVC Instructions for transfer from the program memory area address code or

constant to accumulator in 8051

Instruction Action Addressing Length
in bytes

Cycles

 MOVC A, @A+DPTR Moves the code or constant into A the byte
from the program memory address pointed

Indirect 1 2

 LECTURE NOTES- MP&MC

 04

by hypothetical addition of DPTR with the A
itself.

MOVC A, @A+PC Move the code or constant into A the byte
from the program memory address pointed
by hypothetical addition of PC with the A
itself

Indirect 1 2

MOX-type Instructions

A MOVX instruction means move (copy) the 8-bit data into A and from A using the external

data memory address using DPTR or Ri as the pointer

Table 4.6 MOVX instruction

Instruction Action Addressing Length in

bytes

Cycles

MOVX A, @DPTR Move the external data byte

(X-DATA) into A from the

data memory address pointed

by DPTR

Indirect 1 2

MOVX @DPTR,A Move into the external data

memory from A to the

address pointed by DPTR

Indirect 1 2

MOVX A,@Ri Move the external data byte

into a from the memory

address pointed by Ri

Indirect 1 2

MOVX @Ri, A Move into the external data

memory from A to the

memory address pointed by

Ri

Indirect 1 2

 Table 4.7 PUSH and POP instructions for using the Stack Area employing SP

Instruction Action Addressing Length in

bytes

Cycles

PUSH direct Move byte from a direct

internal RAM or SFR into the

stack after first incrementing

the stack pointer by 1

Direct 2 2

POP direct Move byte to a direct internal

RAM or SFR into the stack

and then decrement the stack

pointer by 1.

Direct 2 2

 LECTURE NOTES- MP&MC

 05

XCH-type instructions

An XCH instruction is for exchanging the A register with a source using the register (direct or

indirect addresing0 mode.

Table 4.8 XCH and XCHD instruction

Instruction Action Addressing Length in

bytes

cycles

XCH A@Ri Exchange byte at A with the

address pointed by Ri

Indirect 1 2

XCH A,Rn Exchange byte at A with the

register Rn

Register 1 2

XCH A, direct Exchange byte at A with the byte

at a direct address.

Direct 1 1

XCHD A,@Ri Exchange lower hex-digits of the

bytes at A with the address pointed

by Ri

Indirect 1 2

12.2 Arithmetic Instruction

These instructions include 8 bit addition, subtraction, increment, decrement, multiply and

division instruction.

Table 4.9 Arithmetic ADD, SUB,MUL, DIV, INC and DEC instruction s in 8051

Instruction Action Addressing Flags

affected

Length

(bytes)

Cycles

ADD A,Rn Add Rn into A Register C,AC,OV 1 1

ADD A, direct Add the byte at the direct address

into A

Direct C,AC,OV 2 1

ADD A, @Ri Add the byte from the address

pointed by the Ri into A

Indirect C,AC,OV 1 1

ADD A, #data Add immediate data byte to the A Immediate C,AC,OV 2 1

ADDC A, Rn Add CF(carry) bit and Rn into A Register C,AC,OV 1 1

ADDC A, direct Add CF bit and byte at the direct

address ito A

Direct C,AC,OV 2 1

ADDC A @Ri Add CF bit and the byte from the

address pointed by the Ri

Indirect C,AC,OV 1 1

ADDC A, #data Add CF bit and immediate data

byte to the A

Immediate C,AC,OV 2 1

SBBB A,Rn Subtract borrow at CF bit and Rn

into A

Rgister C,AC,OV 1 1

SBBB A, direct Subtract borrow at CF bit and byte

at the direct address into A

Direct C,AC,OV 2 1

SBBB A, @Ri Subtract borrow at C bit and byte at

the byte from the address pointed

Indirect C,AC,OV 1 1

 LECTURE NOTES- MP&MC

 06

by the Ri into A

SBBB A, #data Subtract borrow at CF bit and

immediate data byte into A

Immediate C,AC,OV 2 1

INC A Increment Register None 1 1

INC Rn Increment Rn Register None 1 1

INC direct Increment byte at the direct address Direct None 2 1

INC @Ri Increment the byte at the address

pointed by Ri

Indirect None 1 1

DEC A Decrement A Register None 1 1

DEC Rn Decrement Rn Register None 1 1

DEC direct Decrement byte at the direct

address

Direct None 2 1

DEC @Ri Decrement the byte at the address

pointed by the Ri

Indirect None 1 1

MUL AB Multiply A and B Result MSB in B

and LSB in A

Register OV 1 4

DIV AB Divide A (Numerator) and B(

denominator) Remainder in B

Quotient in A

Register OV 1 4

DAA Decimal adjust accumulator Register C 1 1

12.3 Logical Instruction

Table gives features of 8-bit AND, OR and XOR instruction. These instructions have 4

addressing modes such as register, immediate, direct and indirect.

Table 4.10 ANL, ORL XRL instruction

Instruction Action Addressing Length in

bytes

Cycles

ANL A, Rn AND Rn into A Register 1 1

ANL A, direct AND byte at the direct address

into A

Direct 2 1

ANL A, @Ri AND into the byte from the

address pointed by the Ri

Indirect 1 1

ANL A, #data AND immediate data byte into A immediate 2 1

ANL direct, A AND A into byte at the direct

address

Direct 2 1

ANL direct, #data AND immediate byte into byte at

the direct address

Direct 3 2

ORL A, Rn OR Rn into A Register 1 1

ORL A, direct OR byte at the direct address into

A

Direct 2 1

ORL A, @Ri OR into the byte from the address

pointed by Ri

Indirect 1 1

ORL A, #data OR immediate data byte to the A immediate 2 1

ORL direct, A OR A into byte at the direct

address

Direct 2 1

ORL direct,#data OR immediate byte into byte at the Direct 3 2

 LECTURE NOTES- MP&MC

 07

direct address

XRL A, Rn XOR Rn into A Register 1 1

XRL A, direct XOR byte at the direct address

into A

Direct 2 1

XRL A, @Ri XOR the byte at the address

pointed by Ri into A

Indirect 1 1

XRL A, #data XOR immediate data byte to the A immediate 2 1

XRL direct, A XOR A into byte at the direct

address

Direct 2 1

XRL direct, #data XOR immediate byte into byte at

the direct address

Direct 3 2

12.4 Boolean Variable manipulation Instructions

These are also called as Boolean processing instruction.

Table 4.11 MOV, CLR, CPL,SETB,ANL, and ORL Boolean Processing Instruction

Instruction Action Addressing Length

(bytes)

Cycles

MOV C, bit Move bit into CF Direct bit addressing 2 1

MOV bit, C Move CF into the bit Direct bit addressing 2 2

 CLR C Clear CF PSW Register CF bit

addressing

1 1

CLR bit Clear bit Direct bit addressing 2 1

CPL C Complement CF PSW Register CF bit

addressing

1 1

CPL bit Complement bit Direct bit addressing 2 1

SETB C Set CF=1 PSW Register CF bit

addressing

1 1

SETB bit Set bit =1 Direct bit addressing 2 1

ANL C,bit AND between CF and bit, place the

result in CF

Direct bit addressing 2 2

ANL C, bit AND between CF and , place the
result in C

Direct bit addressing 2 2

ORL C,bit OR between CF and bit, place the

result in C

Direct bit addressing 2 2

ORL C, bit OR between CF and bit , place the
result in C

Direct bit addressing 2 2

 12.5 Control Transfer Instruction

 In the main program other sub programs may be called to perform a particular task. When a sub

program is called the processor will jump to a new address where this program is available and

 LECTURE NOTES- MP&MC

 08

it has to accomplish program flow control transfer with help of JUMP and CALL instruction

when some condition met.

 Table 4.12 Delay-Cycle (NOP) instruction (No operation)

Instruction Action Addressing Length in

bytes

Cycles

NOP No operation, PC gets the address of

next instruction on incrementing at

NOP.

 1 1

Long, Absolute and Short Jump

8051 has three jump instructions: Long- it jumps to 16-bit address, Absolute- it jumps within 2 K

bytes and Short- it jumps to address within 128 bytes above or below the present address.

Table 4.13 Long, absolute and short jump instructions

Instruction Action Addressing Length

in bytes

Cycles

LJMP addr16 Jump to the next address given by

two bytes in the instruction

Direct 16 bit

address

3 2

AJMP addr11 Jump to the next address Direct 11-bit

address

2 2

SJMP rel Jump in the range between -128

and +127 from the address of

next instruction

Direct 8-bit 2 2

JMP @A+DPTR Jump in the next address given by

addition of 8-bits of A with 16-

bits of DPTR

Indirect 16-bit

relative

addreess

 Table 4.14 Conditional Short Relative Jumps

Instruction Action Addressing Length

in bytes

Cycles

JNZ rel Jump to a relative address if a is

not zero

Relative(offset) 2 2

JZ rel Jump to a relative address if A is

zero

Relative(offset) 2 2

JNC rel Jump to a relative address if CF is

not 1

Relative(offset) 2 2

JC rel Jump to a relative address if CF=1 Relative(offset) 2 2

JB bit, rel Jump to a relative address if

addressed bit 1 (bit not set)

Relative(offset) 2 2

JNB bit,rel Jump to a relative address if

addressed bit 0 (bit not set)

Relative(offset) 2 2

JBC bit, rel Jump to a relative address if

addressed bit 1(bit set) and reset

Relative(offset) 2 2

 LECTURE NOTES- MP&MC

 09

carry (make CF=0)

Decrement and Conditional jump on Zero

Table 4.15 Instruction for decrement and then jump in program-loops in 8051

Instruction Action Addressing Length

in bytes

Cycles

DJNZ Rn, Rel Decrement Rn and jump if Rn is

still not zero.

Relative (offset) 2 2

DJNZ direct, Rel Decrement byte at the direct and

jump if byte is still not zero

Relative (offset) 2 2

Jump after comparison

Table 4.16 Compare then conditional jump after comparison

Instruction Action Addressing Flag

affected

Length

 in bytes

Cycles

CJNE A, #data, rel Compare A and

immediate data and

jump if both are not

equal.

Relative

(offset)

C 3 2

CJNE Rn, #data, rel Compare Rn and

immediate data and

jump if both are not

equal.

Relative

(offset

C 3 2

CJNE A, direct, rel Compare the bytes at

A and direct and

jump if both are not

equal

Relative

(offset

C 3 2

CJNE @Ri, #data, rel Compare byte from

the address pointed

by Ri and immediate

data and jump if

both are not equal

Relative

(offset)

C 3 2

Call to a Routine

`Table 4.17 Long, absolute call and return instruction

Instruction Action Addressing Length

in bytes

Cycles

LCALL addr16 Call to the next address given by two

bytes in the instruction

Direct 16-

bit address

3 2

ACALL addr11 Call the next address given by 11 bits in Direct 11 2 2

 LECTURE NOTES- MP&MC

 10

the instruction. bit address

RET Return to PC the saved PCL and PCH

from the stack.

Stack

address

1 2

12.6 Interrupt Control Flow (RETI instruction)

Table 4.18 RETI instruction

Instruction Action Addressing Length In bytes cycles

RETI Return into PC the

saved PCL and

Stack adddress 1 2

12. Programming

While the CPU can work only in binary, it can do so at a very high speed, however, it is quite

tedious and slow for humans to deal with 0s and 1s in order to program the computer. A program

that consists of 0s and 1s is called machine language. In the early days of the computer

programmers coded programs in machine language. Although the hexadecimal system was used

as a more efficient way to represent binary numbers, the process of working in machine code

was still cumbersome for humans. Eventually, assembly language were developed which

provided mnemonics for the machine code instructions. Plus other features which made

programming faster and less prone to error. Assembly language is referred to as low level

language because it deals directly with internal structure of CPU. Programmer needs assembler

to convert the assembly language to machine language for execution purpose. Assembly

language consists mnemonics optionally followed by one or two operands.

Programs

P1. Write an ALP (Assembly Language Program) to find the sum of values and store the result

in A (lower byte and in R7 (higher byte). Assume that RAM locations 40-44 have the following

values.

40=(7B), 41=(EC), 42=(C4), 43=(5B), 44=(30)

 LECTURE NOTES- MP&MC

 11

Solution:

 MOV R0, #40H ; load pointer

 MOV R2, #05H ; load counter

 CLR A ; A=0

 MOV R7, A ; clear R7

AGAIN: ADD A, @R0 ; add the byte pointer

 JNC NEXT ; if CY=0 it can jump to NEXT label

 INC R7 ; increment counter

NEXT: INC R0 ; increment pointer

 DJNZ R2,AGAIN ; repeat until R2is zero

HERE: SJMP HERE

P2. Assume that 5 BCD data items are stored in RAM locations starting a 40H as shown below.

Write an ALP to find the sum of all numbers. The result must be in BCD.

Solution:

MOV R0, #40H ; load pointer

 MOV R2, #05H ; load counter

 CLR A ; A=0

 MOV R7, A ; clear R7

AGAIN: ADD A, @R0 ; add the byte pointer

 DA A

 JNC NEXT ; if CY=0 it can jump to NEXT label

 INC R7 ; increment counter

NEXT: INC R0 ; increment pointer

 LECTURE NOTES- MP&MC

 12

 DJNZ R2,AGAIN ; repeat until R2is zero

HERE: SJMP HERE

P3. Write an ALP to get hex data in the range of 00-FFH from port 1 and convert it to decimal.

Save the digits in R7, R6 and R5, where the least significant digit in R7.

 MOV A, #0FFH

 MOV P1, A ; make an P1 an input port

 MOV A1, P1 ; read data from P1

 MOV B, #0AH ; move 0AH to register b

 DIV AB ; divide by the contents of A by B

 MOV R7, B ; Save lower digit in R7 register

 MOV B , #0AH ;

 DIV AB ;

 MOV R6, B ; save the next digit

 MOV R5, A ; save the last digit

HERE: SJMP HERE

P4. Read and test P1 to see whether it has the value 45H. if it does send 99H to P2; otherwise, it

stays cleared.

Solution:

 MOV P2, 00H ; clear P2

 MOV P1, #0FFH ; make P1 an input port

 MOV R3, #45H ; R3=45H

 MOV A, P1 ; read P1

 XRL A, R3 ;

 LECTURE NOTES- MP&MC

 13

 JNZ EXIT

 MOV P2, #99H

EXIT: ……

P5. Find the 2’s complement of the value 78 H

Solution:

 MOV A, #78H ; A=85H

 CPL A ; make 1’s complement a

 ADD A, #01H ; make 2’s complemt

HERE: SJMP HERE

P6. Write an ALP to determine if register A contains the value 99H, if so, make R1=FFH

otherwise make R1=0.

Solution:

 MOV R1, #00H ; clear R1

 CJNE A, #99H, NEXT ; if A is not equal 99H then jump

 MOV R1, #0FFH ; make R1=FFH

NEXT …..

P7. Assume that P1 is an input port connected to a temperature sensor. Write an ALP to read the

temperature and test it for the value 75. According to the rest result, place the temperature value

into the registers indicated by the following.

If T=75 then A=75

If T<75 then R1=T

If T>75 then R2=T

 LECTURE NOTES- MP&MC

 14

Solution:

 MOV P1, # 0FFH ; make P1 an input port

 MOV A, P1 ; read P1 port, temperature

 CJNE A, #75, OVER ; jump if A is not equal 75

 SJMP EXIT

OVER: JNC NEXT ; if CY=0, then A>75

 MOV R1, A ; if CY=1, A<75

 SJMP EXIT ; Exit

NEXT: MOV R2, A

EXIT ……

P8. Write an ALP that finds the number of 1s in a given byte 97H.

Solution:

 MOV R1, #00H ; clear R1

MOV R7, 08H ; Counter=08

MOV A, 97H

AGAIN: RLC A ; rotate through CY once

 JNC NEXT ; check for CY

 INC R1 ; if CY=1 then increment R1

NEXT: DJNZ R7, AGAIN ; go through 8times

HERE: SJMP HERE

P9. Assume that register a has packed BCD 29H, write an ALP to convert packed BCD to

ASCII numbers and place them in R2 and R6.

 LECTURE NOTES- MP&MC

 15

Solution:

 MOV A, #29H ; A=29H, packed BCD

 MOV R2, A ; keep a copy of BCD data in R2

 ANL A, #0FH ; mask the upper nibble (A=09)

 ORL A, #30H ; make it an ASCII, A=39H

 MOV A, R6 ; save in R6

 MOV A, R2 ; A=29H

 ANL A, #0F0H ; mask the lower nibble

 RR A ; rotae right

 RR A ; rotae right

 RR A ; rotate right

 RR A ; rotate right

 ORL A, #30 H ; A=32H

 MOV R2, A ; save the ASCII character in R2

HERE: SJMP HERE

P10. Write an ALP to create a square wave of 50% duty cycle on bit 0 of port 1.

 Solution:

HERE: SETB P1.0 ; set to high bit 0of port 1

 LCALL DELAY ; call the delay subroutine

 CLR P1.0 ; p1.0=0

 LCALL DELAY

 SJMP HERE

 LECTURE NOTES- MP&MC

 16

P11. Assume that the bit P2.2 is used to control the outdoor light and bit P2.5 to control the light

inside the building. Write an ALP to turn on outside light and to turn the inside one.

Solution:

 SETB C ; CY=1

 ORL C, P2.2 ; CY=P2.2

 MOV P2.2, C ; turn it “on” if not already “on”

 CLR C ; CY=0

 ANL C, P2.5 ; CY=P2.5 ANDed with CY

 MOV P2.5, C ; turn it off if not already off.

