

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

2.8 CIRCULAR LINKED LIST

Circular linked list is similar to normal linked list except that the

last node contains a pointer to the first node of the list.

NODE DECLARATION

class Node:

class Node

{

public:

 int data;

 Node *next;

};

INSERTION

To insert a node at the beginning of a circular linked list, you need to

follow these steps:

 Create a new node with the given data.

 If the list is empty, make the new node the head and point it to itself.

 Otherwise, set the next pointer of the new node to point to the current

head.

 Update the head to point to the new node.

 Update the next pointer of the last node to point to the new

head (to maintain the circular structure).

void insert(int item)

 {

 Node *newNode = new Node;

 newNode->data = item;

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

 if (last == NULL)

 {

 last = newNode;

 newNode->next = newNode;

 }

 else

 {

 newNode->next = last->next;

 last->next = newNode;

 last = newNode;

 }

 }

DELETION

To delete the node at the beginning of a circular linked list in Python, you

need to follow these steps:

 Check if the list is empty. If it is empty, there is nothing to delete.

 If the list has only one node, set the head to None to delete the node.

 Otherwise, find the last node of the list (the node whose next

pointer points to the head).

 Update the next pointer of the last node to point to the second node

(head's next).

 Update the head to point to the second node.

void del(int item)

 {

 if (last == NULL)

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

 {

 cout << "\nList is empty";

 return;

 }

 Node *curr = last->next;

 Node *prev = last;

 do

 {

 if (curr->data == item)

 {

 if (curr == last && curr->next == last)

 {

 last = NULL;

 }

 else

 {

 prev->next = curr->next;

 if (curr == last)

 last = prev;

 }

 delete curr;

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

 cout << "\nElement deleted";

 return;

 }

 prev = curr;

 curr = curr->next;

 } while (curr != last->next);

 cout << "\nElement not found";

 }

Traversal of Circular Linked List:

 Traversing a circular linked list involves visiting each node of

the list starting from the head node and continuing until the

head node is encountered again.

void displaySearch(int item)

{

 if (last == NULL)

 {

 cout << "\nList is empty";

 return;

 }

 Node *temp = last->next;

 int pos = 1;

 int found = 0;

 cout << "\nCircular List: ";

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

 do

 {

 cout << temp->data << " ";

 if (temp->data == item)

 {

 found = 1;

 cout << "(Found at position " << pos << ") ";

 }

 temp = temp->next;

 pos++;

 } while (temp != last->next);

 if (!found)

 cout << "\nElement not found";

}

Advantages:

 No NULL pointer. Supports continuous traversal without NULL.

 Continuous traversal possible

 Traversal can start from any node

 Efficient for cyclic operations

 Fast insertion with tail pointer

Disadvantages:

 Careless traversal may lead to infinite loops.

 More complex implementation than singly list

 Debugging is difficult

 Deletion logic is tricky

 Searching is slow (O(n))

