2.8 CIRCULAR LINKED LIST

Circular linked list is similar to normal linked list except that the

last node contains a pointer to the first node of the list.

NODE DECLARATION

class Node:
class Node
{
public:
int data;

Node *next;

+s

INSERTION

To insert a node at the beginning of a circular linked list, you need to
follow these steps:

e Create a new node with the given data.
e If the list is empty, make the new node the head and point it to itself.

e Otherwise, set the next pointer of the new node to point to the current
head.

e Update the head to point to the new node.

e Update the next pointer of the last node to point to the new
head (to maintain the circular structure).
void insert(int item)
{
Node *newNode = new Node;

newNode->data = item;

. ______________________________________________________________________________________________|
ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 1




if (last == NULL)
{

last = newNode;

newNode->next = newNode;

by

else

{

newNode->next = last->next;
last->next = newNode;

last = newNode;

DELETION

To delete the node at the beginning of a circular linked list in Python, you

need to follow these steps:

e Check if the list is empty. If it is empty, there is nothing to delete.
e If the list has only one node, set the head to None to delete the node.

e Otherwise, find the last node of the list (the node whose next

pointer points to the head).

e Update the next pointer of the last node to point to the second node

(head's next).

e Update the head to point to the second node.

void del(int item)

{

if (last == NULL)

. ______________________________________________________________________________________________|
ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 2




{
cout << "\nList is empty";

return;

Node *curr = last->next;

Node *prev = last;
do

if (curr->data == item)
{

if (curr == last && curr->next == last)

{

last = NULL;
else

prev->next = curr->next;
if (curr == last)
last = prev;
b

delete curr;

. ______________________________________________________________________________________________|
ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 3




cout << "\nElement deleted";
return;

b

prev = curr;

curr = curr->next;

} while (curr = last->next);

cout << "\nElement not found";

Traversal of Circular Linked List:

e Traversing a circular linked list involves visiting each node of
the list starting from the head node and continuing until the
head node is encountered again.

void displaySearch(int item)

{
if (last == NULL)
{
cout << "\nList is empty";
return;
b

Node *temp = last->next;
int pos = 1;

int found = 0;

cout << "\nCircular List: ";

. ______________________________________________________________________________________________|
ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 4




do

cout << temp->data << " ";

if (temp->data == item)
{

found = 1;

cout << "(Found at position " << pos << ") ";
b

temp = temp->next;
pos++;

} while (temp != last->next);

if ('found)

cout << "\nElement not found";

Advantages:

No NULL pointer. Supports continuous traversal without NULL.
o Continuous traversal possible

o Traversal can start from any node

» Efficient for cyclic operations

o Fast insertion with tail pointer
Disadvantages:

« Careless traversal may lead to infinite loops.
o More complex implementation than singly list
o Debugging is difficult

« Deletion logic is tricky

o Searching is slow (O(n))

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 5




