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Binomial Distribution 

 Let us consider “𝑛” independent trails. If the successes (S) and failures (F) are 

recorded successively as the trials are repeated we get a result of the type 

S S F F S . . . F S 

Let “𝑥” be the number of success and hence we have (𝑛 –  𝑥) number of failures. 

𝑃(𝑆 𝑆 𝐹 𝐹 𝑆 . . . 𝐹 𝑆)  =  𝑃(𝑆) 𝑃(𝑆) 𝑃(𝐹) 𝑃(𝐹) 𝑃(𝑆) . . . 𝑃(𝐹) 𝑃(𝑆) 

                                            =  𝑝 𝑝 𝑞 𝑞 𝑝 . . . 𝑞 𝑝 

                                           =  𝑝 𝑝 . . . 𝑝 × 𝑞 𝑞 𝑞 . . . 𝑞  

                                            = 𝑥 factor ×  (𝑛 − 𝑥) factors 

                                             = 𝑝𝑥 ∙ 𝑞𝑛−𝑥 

But “𝑥” success in “𝑛” trials can occur in 𝑛𝐶𝑥 ways. 

Therefore the probability of “𝑥” successes in “𝑛” trials is given by  

𝑃(𝑋 = 𝑥 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠) =  𝑛𝐶𝑥𝑝𝑥𝑞𝑛−𝑥, 𝑥 = 0, 1, 2, . . . , 𝑛 

Where 𝑝 + 𝑞 = 1 

Assumptions in Binomial Distribution: 

(i) There are only two possible outcomes for each trial (success or 

failure) 

(ii) The probability of a success is the same for each trail. 
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(iii) There are “𝑛” trials where “𝑛” is constant. 

(iv) The “𝑛” trails are independent.  

Mean and variance of a Binomial Distribution: 

(i) Mean(µ) = 𝑛𝑝 

(ii) Variance(σ2) = 𝑛𝑝𝑞 

The variance of a Binomial Variable is always less than its mean. 

 ∴ 𝑛𝑝𝑞 < 𝑛𝑝. 

Find the moment generating function of binomial distribution and hence 

find the mean and variance.  

Solution: 

Binomial distribution is 𝑝(𝑥) = 𝑛𝐶𝑥𝑝𝑥𝑞𝑛−𝑥,  𝑥 = 0,1,2, … … , 𝑛 

To find Mean and Variance: 

𝑀𝑋(𝑡)  = 𝐸(𝑒𝑡𝑋) = ∑𝑥=0
𝑛  𝑒𝑡𝑥𝑃(𝑥)   

             = ∑𝑥=0
𝑛  𝑒𝑡𝑥𝑛𝐶𝑥𝑝𝑥𝑞𝑛−𝑥  

             = ∑𝑥=0
𝑛  𝑛𝐶𝑥(𝑝𝑒𝑡)𝑥𝑞𝑛−𝑥                   ∵ ∑𝑥=0

𝑛  𝑛𝐶𝑥𝑎𝑥𝑏𝑛−𝑥 = (𝑎 + 𝑏)𝑛 

𝑀𝑋(𝑡)  = (𝑝𝑒𝑡 + 𝑞)𝑛  

Mean 𝐸(𝑋) = [
𝑑

𝑑𝑡
[𝑀∗(𝑡)]]

𝑡=0
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                    = [
𝑑

𝑑𝑡
[(𝑝𝑒𝑡 + 𝑞)𝑛]]

𝑡=0
 

                    = [𝑛(𝑝𝑒𝑡 + 𝑞)𝑛−1(𝑝𝑒𝑡 + 0)]𝑡=0 

                    = 𝑛𝑝[𝑝 + 𝑞]𝑛−1 

 𝐸(𝑋)  = 𝑛𝑝 

 𝐸(𝑋2) = [
𝑑2

𝑑𝑡2
[𝑀𝑋(𝑡)]]

𝑡=0

 

              = [
𝑑

𝑑𝑡
[𝑛(𝑝𝑒𝑡 + 𝑞)𝑛−1(𝑝𝑒𝑡)]]

𝑡=0
 

              = 𝑛𝑝 [
𝑑

𝑑𝑡
[(𝑝𝑒𝑡 + 𝑞)(𝑛−1)𝑒𝑡]]

𝑡=0
 

              = 𝑛𝑝[(𝑝𝑒𝑡 + 𝑞)𝑛−1𝑒𝑡 + 𝑒𝑡(𝑛 − 1)(𝑝𝑒𝑡 + 𝑞)𝑛−2𝑝𝑒𝑡]𝑡=0  

              = 𝑛𝑝[(𝑝 + 𝑞)𝑛−1 + (𝑛 − 1)(𝑝 + 𝑞)𝑛−2𝑝] 

              = 𝑛𝑝[1 + (𝑛 − 1)𝑝]  

              = 𝑛𝑝[1 + 𝑛𝑝 − 𝑝] 

              = 𝑛𝑝[1 − 𝑝 + 𝑛𝑝] 

              = 𝑛𝑝[𝑞 + 𝑛𝑝] 

               = 𝑛𝑝𝑞 + 𝑛2𝑝2 
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  𝐸(𝑋2) = (𝑛𝑝)2 + 𝑛𝑝𝑞 

  Variance = 𝐸(𝑋2) − [𝐸(𝑋)]2 

                    = (𝑛𝑝)2 + 𝑛𝑝𝑞 − (𝑛𝑝)2 

                   = 𝑛2𝑝2 − 𝑛2𝑝2 + 𝑛𝑝𝑞 

 Variance= 𝑛pq 

Problems based on Binomial Distribution: 

Mean =  𝒏𝒑 

Variance =  𝒏𝒑𝒒 

1. Criticize the following statements “ The mean of a binomial distribution 

is 5 and the standard deviation is 3” 

Solution: 

Given mean = np = 5                   . . . (1) 

Standard deviation = √𝑛𝑝𝑞 = 3 

⇒ Variance = npq = 9                 . . . (2) 

(2)

(1)
⇒

𝑛𝑝𝑞

𝑛𝑝
=

9

5
= 1.8 > 1 

Which is impossible. Hence, the given statement is wrong. 

2. If 𝑴𝑿(𝒕) =
(𝟐𝒆𝒕+𝟏)

𝟒

𝟖𝟏
, then find Mean and Variance. 

Solution: 
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Given 𝑀𝑋(𝑡) =
(2𝑒𝑡+1)

4

81
 

 ⇒ 𝑀𝑋(𝑡) = (
2

3
𝑒𝑡 +

1

3
)

4
 

Comparing with MGF of Binomial Distribution, 𝑀𝑋(𝑡) = (𝑝𝑒𝑡 + 𝑞)𝑛, we get 

𝑝 =
2

3
 and =

1

3
 , n = 4 

(i) Mean = 𝑛𝑝 = 4 ×
2

3
=

8

3
  

(ii) Variance =  𝑛𝑝𝑞 =  
8

3
×

1

3
=

8

9
 

3. Six dice are thrown 729 times. How many times do you expect atleast 3 

dice to show a five or six. 

Solution: 

Given 𝑛 =  6 and 𝑁 =  729 

Probability of getting (5 or 6) 𝑝 =
2

6
=  

1

3
 

and 𝑞 = 1 −
1

3 
=

2

3
 

 𝑃(𝑋 = 𝑥 ) =  𝑛𝐶𝑥𝑝𝑥𝑞𝑛−𝑥, 𝑥 = 0, 1, 2, . . . , 𝑛 

                    = 6𝐶𝑥 (
1

3
)

𝑥

(
2

3
)

6−𝑥
, 𝑥 = 0, 1, 2, . . . , 6 

P(atleast 3 dice to show a five or six) = 𝑃(𝑋 ≥ 3) = 1 − 𝑃(𝑋 < 3) 

              = 1 −  [𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2)] 

              = 1 − [6𝐶0 (
1

3
)

0

(
2

3
)

6−0
+ 6𝐶1 (

1

3
)

1

(
2

3
)

6−1
+ 6𝐶2 (

1

3
)

2

(
2

3
)

6−2

]   

              = 1 − [0.0877 + 0.2634 + 0.3292] 

              = 1 − 0.6803 
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              = 0.3197 

Number of times expecting atleast 3 dice to show 5 or 6 = 729 × 0.3197 

                                                                                          = 233 times 

4. A machine manufacturing screw is known to produce 5% defective. In a 

random sample of 15 screws, what is the probability that there are (i) 

exactly 3 defectives (ii) not more than 3 defectives. 

Solution: 

Given 𝑛 =  15 

 𝑝 = 5% = 0.05 

 𝑞 = 1 − 𝑝 = 1 − 0.05 = 0.95 

 𝑃(𝑋 = 𝑥 ) =  𝑛𝐶𝑥𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0, 1, 2, . . . , 𝑛 

                   = 15𝐶𝑥(0.05)𝑥(0.95)15−𝑥, 𝑥 = 0, 1, 2, . . . , 15     

(i) P(exactly 3 defectives) = 𝑃(𝑋 = 3) 

                                 = 15𝐶3(0.05)3(0.95)15−3     

                                 = 0.056(0.95)12 

                                 = 0.0307 

(ii) P(no kore than 3 defectives) = 𝑃(𝑋 ≤ 3) 

= 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) 

= 15𝐶0(0.05)0(0.95)15−0 + 15𝐶1(0.05)1(0.95)15−1

+ 15𝐶3(0.05)2(0.95)15−2 

                                          +15𝐶3(0.05)3(0.95)15−3 
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 = 15𝐶0(0.05)0(0.95)15 + 15𝐶1(0.05)1(0.95)14 + 15𝐶3(0.05)2(0.95)13 

                                          +15𝐶3(0.05)3(0.95)12 

 = 0.4633 + 0.3658 + 0.1348 + 0.0307 

  = 0.9946 

Poisson Distribution 

Poisson Distribution is a limiting case of Binomial Distribution under the 

following assumptions. 

(i) The number of trails “𝑛” should be independently large. i.e., 𝑛 → ∞ 

(ii) The probability of successes “𝑝” for each trail is indefinitely small. 

(iii) 𝑛𝑝 =  𝜆 should be finite where 𝜆 is a constant. 

Application of Poisson Distribution: 

           Determining the number of calls received per minute at a call Centre or the 

number of unbaked cookies in a batch at a bakery, and much more. 

Find the MGF for Poisson distribution and hence find the mean and 

variance. 

Solution:     

Poisson distribution is 𝑝(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
 𝑥 = 0,1,2, … …, 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑥] 

         = ∑𝑥=0
∞  𝑒𝑡𝑥𝑝(𝑥) 
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          = ∑𝑥=0
∞  𝑒−𝑥𝑒−𝜆 𝜆𝑥

𝑥!
= ∑𝑥=0

∞  
(𝑒𝑡)

0
 

            = 𝑒−𝜆 [1 +
𝜆𝑒𝑡

1!
+

(𝜆𝑒𝑡)
2

2!
+

(𝜆𝑒𝑡)
3

3!
+ ⋯ ] 

            = 𝑒−𝜆𝑒𝜆𝑒𝑡
= 𝑒−𝜆+𝜆𝜖𝑡

 ∵ 1 +
𝑥

1!
+

𝑥2

2!
+ ⋯ = 𝑒𝑥  

𝑀𝑋(𝑡) = 𝑒𝜆(𝑒𝑡−1)  

To find the mean and variance of : 

Mean 𝐸(𝑋) = [
𝑑

𝑑𝑡
[𝑀𝑋(𝑡)]]

𝑡=0

 

                     = [
𝑑

𝑑𝑡
[𝑒𝜆(𝑒𝑡−1)]]

𝑡=0
 

                     = [𝑒𝜆(𝑒𝑡−1)𝜆(𝑒𝑡)]
𝑡=0

 

                     = 𝑒𝜆(𝑒0−1)𝜆𝑒0 = 𝑒0𝜆 

 Mean = 𝜆 

𝐸(𝑋2) = [
𝑑2

𝑑𝑡2
[𝑀𝑋(𝑡)]]

𝑡=0

 

           = [
𝑑2

𝑑𝑡2 [𝑒𝜆(𝑒𝑡−1)]]
𝑡=0
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           = [
𝑑

𝑑𝑡
[𝑒𝜆(𝑒𝑡−1)𝜆𝑒𝑡]]

𝑡=0
 

          = 𝜆 [
𝑑

𝑑𝑡
[𝑒𝜆(𝑒𝑡−1)+𝑡]]

𝑡=0
 

         = 𝜆[𝑒𝜆(𝑒𝑡−1)+𝑡(𝜆𝑒𝑡 + 1)]
𝑡=0

 

          = 𝜆[𝑒0(𝜆 + 1)]  

            = 𝜆(𝜆 + 1)  

  𝐸(𝑋2) = 𝜆2 + 𝜆  

  Variance = 𝐸(𝑋2) − [𝐸(𝑋)]2  

                      = 𝜆2 + 𝜆 − 𝜆2   

 Variance = 𝜆  

Problems based on Poisson Distribution: 

1. Write down the probability mass function of the Poisson distribution which 

is approximately equivalent to B(100, 0.02) 

Solution: 

Given 𝑛 =  1000, 𝑝 =  0.02 

𝜆 = 𝑛𝑝 = 100 × 0.02 = 2 

The probability mass function of the Poisson distribution  



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MA3303 PROBABILITY AND COMPLEX FUNCTIONS 

 

𝑃(𝑥) =  
𝑒−𝜆𝜆𝑥

𝑥!
; 𝑥 = 0, 1, 2, . . . , ∞ 

                                                      =  
𝑒−22𝑥

𝑥!
; 𝑥 = 0, 1, 2, . . . , ∞  

2. One percent of jobs arriving at a computer system need to wait until 

weekends for scheduling, owing to core – size limitations. Find the probability 

that among a sample of 200 jobs there are no jobs hat have to wait until 

weekends. 

Solution: 

Given 𝑛 =  200, p = 0.01 

𝜆 = 𝑛𝑝 = 200 × 0.01 = 2 

The Poisson distribution is  

 𝑃(𝑥) =  
𝑒−𝜆𝜆𝑥

𝑥!
; 𝑥 = 0, 1, 2, . . . , ∞ 

P( no jobs to wait until weekends) = 𝑃(𝑋 =  0) 

𝑃(𝑋 =  0) =
𝑒−220

0!
=  𝑒−2 = 0.1353 

3. The proofs of a 500 pages book containing 500 misprints. Find the 

probability that there are atleast 4 misprints in a randomly chosen page. 

Solution: 

Given 𝑛 =  500 
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p = P( getting a misprint in a given page) =
1

500
 

 𝜆 = 𝑛𝑝 = 500 ×
1

500
= 1 

The Poisson distribution is  

 𝑃(𝑥) =  
𝑒−𝜆𝜆𝑥

𝑥!
; 𝑥 = 0, 1, 2, . . . , ∞ 

 𝑃(𝑋 ≥ 4) = 1 − 𝑃(𝑋 < 4) 

                   = 1 − [𝑃(𝑋 = 0) + 𝑃(𝑋 = 1)] + 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) 

                   = 1 − [
𝑒−110

0!
+

𝑒−111

1!
+

𝑒−112

2!
+

𝑒−113

3!
] 

                 = 1 − 𝑒−1 [1 + 1 +
1

2
+

1

6
] 

                 = 1 − 0.3679[2.666] 

               = 1 − 0.9809 

                = 0.0192 

 

 


