
24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

1.7 Types of Functions

o User-defined Functions:

 Functions created by the programmer to perform specific tasks and

improve program modularity and reusability.

o Standard Library Functions:

 Predefined functions provided by C++ libraries to perform common

operations (e.g., sqrt(), pow(), cin, cout).

1.7.1 Call by Reference

Call by Reference is a parameter-passing technique in which the reference (or

alias) of the actual argument is passed to a function. Any modification made inside

the function directly affects the original variable.

Need for Call by Reference

 Memory Location: Both the formal parameter and the actual argument refer/point

to the same memory location.

 Data Modification: Any changes to the parameter inside the function directly

affects the original argument's value.

 Efficiency: Call by reference is more efficient for large data structures as it avoids

copying the data.

 Implementation: This method is implemented differently across languages, for

example, using pointers in C, the & operator in C++, while Java and Python use

variations of pass-by-value

1.7.1 Reference Variables

A reference variable is an alias for another variable. Any change made to

the reference variable directly affects the original variable.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

Syntax

void function_name(int &x, int &y)

{

 // statements

}

Using Pointers Syntax

void function_name(int *x, int *y)

{

 // statements

}

function_name(&a, &b); // Function Call

Reference Version Function Call

 function_name(a, b);

1.7.3 Passing Arrays and Objects by Reference

Large arrays or objects can be passed by reference to avoid copying and

improve performance.

 Any modifications inside the function will directly affect the original array

or object.

 This approach is particularly useful in firmware design and system

modeling, where memory efficiency is important.

Example Program (Swap Using Call by Reference)

#include <iostream.h>

class Addition

{
public:

 void add(int &a, int &b, int &sum) // Call by Reference
 {

 sum = a + b;
 }

};
void main()

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

{

 int x = 10, y = 20, result;
 Addition A1; // Object name starts with 'A' → A1

 A1.add(x, y, result);
 cout << "Addition = " << result;

 }
Advantages

1. Original variables are directly changed without returning them.

2. No need to explicitly return values from the function.

3. Saves memory and execution time since data is not copied.

4. Particularly useful for large arrays, objects, and structures.

Disadvantages

1. Changes may occur unintentionally, leading to logical errors.

2. Debugging becomes harder because the original data is modified indirectly.

3. Using invalid references or pointers may cause errors.

4. Overuse of call by reference can reduce program clarity and safety.

1.7.4 Return by Reference

Return by Reference allows a function to return a reference to a variable

instead of returning a copy. This provides direct access to the original variable

outside the function, enabling modifications to the variable without creating a new

copy.

Need for Return by Reference

Return by Reference is used in the following situations:

1. To provide high efficiency when returning large objects.

2. To allow direct modification of the returned variable.

3. Useful in operator overloading and chaining operations.

4. To avoid the overhead of creating temporary copies of data.

To return by reference, an ampersand (&) is placed after the return type in the

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

function declaration.

Syntax

Function Definition

datatype& function_name()

{

 return variable; // must not be a local variable

}

Function Call

int &ref = function_name();

Example Program

#include <iostream.h>

class Addition

{

public:

 int& add(int &a, int &b, int &sum) // Return by Reference

 {

 sum = a + b;

 return sum;

 }

};

void main()

{

 int x = 10, y = 20, result;

 Addition A1; // Object name starts with 'A' → A1

 int &res = A1.add(x, y, result); // Call add() and get reference

 cout << "Addition = " << res;

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

}

Output:

 Addition = 30

 add() takes two integers and a reference to sum.

 The function returns a reference to sum.

 Using int &res = A1.add(x, y, result);, we access the sum via reference.

Key Characteristics and Uses:

 Avoiding Copies:

Returning a reference can be more efficient than returning by value, especially for

large objects, as it avoids the overhead of creating and copying a temporary object.

 Modifying Original Data:

When a function returns a reference, the returned reference can be used to directly

modify the original variable to which it refers. This allows the function call itself to

be used on the left-hand side of an assignment, effectively changing the original

data.

 L-value Return Types: Returning by reference is crucial when a function needs to

evaluate to an l-value (something that can appear on the left side of an

assignment). This is common in overloaded operators, particularly the assignment

operator (=).

Advantages

1. Improves performance by avoiding unnecessary data copying.

2. Useful for returning large structures or objects efficiently.

3. Enables direct modification of the returned data.

4. Supports operator overloading and other advanced programming

techniques.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

Disadvantages

1. Returning a reference to a local variable is dangerous, because it is

destroyed when the function ends.

2. Increases the risk of unintentional side effects.

3. The returned reference must remain valid, requiring careful memory

management.

4. Harder to debug if misuse occurs.

