1.3 CONSTRUCTION OF ANALYTIC FUNCTION

There are three methods to find f(z).

Method: 1 Exact differential method.

(i) Suppose the harmonic function u(x, y) is given.

Now, $dv = v_x dx + v_y dy$ is an exact differential

Where, v_x and v_y are known from u by using C-R equations.

$$\dot{v} = \int v_x \, dx + \int v_y \, dy = -\int u_y \, dx + \int u_x \, dy$$

(ii) Suppose the harmonic function v(x, y) is given.

Now, $du = u_x dx + u_y dy$ is an exact differential

Where, u_x and u_y are known from v by using C-R equations.

$$u = \int u_x dx + \int u dy$$
$$= \int v_y dx + \int -v_x dy$$
$$= \int v_y dx - \int v_x dy$$

Method: 2 Substitution method

$$f(z) = 2u\left[\frac{1}{2}(z+a), \frac{-i}{2}(z-a)\right] - [u(a,0), -iv(a,0)]$$

Here, u(a, 0), -iv(a, 0) is a constant

Thus
$$f(z) = 2u \left[\frac{1}{2}(z+a), \frac{-i}{2}(z-a) \right] + C$$

By taking a = 0, that is, if f(z) is analytic z = 0 + i0,

We have the simpler formula for f(z)

$$f(z) = 2\left[u\frac{z}{2}, \frac{-iz}{2}\right] + C$$

Method: 3 [Milne – Thomson method]

(i) To find f(z) when u is given

Let
$$f(z) = u + iv$$

$$f'(z) = u_x + iv_x$$

=
$$u_x - iv_y$$
 [by C-R condition]

$$\therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule],

Where, C is a complex constant.

(ii) To find
$$f(z)$$
 when v is given

Let
$$f(z) = u + iv$$

$$f'(z) = u_x + iv_x$$

$$= v_v + iv_x$$
 [by C-R condition]

$$f(z) = \int v_v(z,0)dz + i \int v_x(z,0)dz + C$$
 [by Milne–Thomson rule],

Where, C is a complex constant.

Example: 1.22 Construct the analytic function f(z) for which the real part is $e^x \cos y$.

Solution:

Given
$$u = e^x \cos y$$

$$\Rightarrow u_x = e^x \cos y$$
 [:: $\cos 0 = 1$]

$$\Rightarrow u_x(z, 0) = e^x$$

$$\Rightarrow u_y = e^x \cos y$$
 [:: $\sin 0 = 0$]

$$\Rightarrow u_y(z, 0) = 0$$

$$\therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule],

Where, C is a complex constant.

$$f(z) = \int e^z dz - i \int 0 dz + C$$
$$= e^z + C$$

Example: 1.23 Determine the analytic function w = u + iv if $u = e^{2x}(x \cos 2y - y \sin 2y)$

Solution:

Given
$$u = e^{2x}(x\cos 2y - y\sin 2y)$$

$$u_x = e^{2x}[\cos 2y] + (x\cos 2y - y\sin 2y)[2 e^{2x}]$$

$$u_x(z,0) = e^{2z}[1] + [z(1) - 0][2e^{2z}]$$

$$= e^{2z} + 2ze^{2z}$$

$$= (1 + 2z)e^{2x}$$

$$u_y = e^{2x}[-2x\sin 2y - (y2\cos 2y + \sin 2y)]$$

$$u_y(z,0) = e^{2z}[-0 - (0 + 0)] = 0$$

$$\label{eq:force_force} \therefore f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + \mathcal{C} \ \ [\text{by Milne-Thomson rule}],$$

Where, C is a complex constant.

$$f(z) = \int (1+2z)e^{2z}dz - i \int 0 + dz + C$$

$$= \int (1+2z)e^{2z}dz + C$$

$$= (1+2z)\frac{e^{2z}}{2} - 2\frac{e^{2z}}{4} + C \quad [\because \int uv \, dz = uv_1 - u'v_2 + u''v_3 - \cdots]$$

$$= \frac{e^{2z}}{2} + ze^{2z} - \frac{e^{2z}}{2} + C$$

$$= ze^{2z} + C$$

Example: 1.24 Determine the analytic function where real part is

$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1.$$

Solution:

Given
$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

 $u_x = 3x^2 - 3y^2 + 6x$
 $\Rightarrow u_x(z,0) = 3z^2 - 0 + 6z$
 $u_y = 0 - 6xy + 0 - 6y$
 $\Rightarrow u_y(z,0) = 0$
 $f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$ [by Milne–Thomson rule],
Where, C is a complex constant.
 $f(z) = \int (3z^2 + 6z)dz - i \int 0 + dz + C$
 $= 3\frac{z^2}{3} + 6\frac{z^2}{2} + C$
 $= z^3 + 3z^2 + C$

Example: 1.25 Determine the analytic function whose real part in $\frac{\sin 2x}{\cosh 2y - \cos 2x}$ Solution:

Given
$$u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

$$u_x = \frac{(\cosh 2y - \cos 2x)[2\cos 2x] - \sin 2x[2\sin 2x]}{[\cosh 2y - \cos 2x]^2}$$

$$u_x(z,0) = \frac{(1 - \cos 2z)(2\cos 2z) - 2\sin^2 2z}{[\cosh 0 - \cos 2z]^2}$$

$$= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2}$$

$$= \frac{2\cos 2z - 2[\cos^2 2z + \sin^2 2z]}{(1 - \cos 2z)^2}$$

$$= \frac{2\cos 2z - 2}{(1 - \cos 2z)^2}$$

$$= \frac{-2(1 - \cos 2z)}{(1 - \cos 2z)^2}$$

$$= \frac{2\cos 2z - 2}{(1 - \cos 2z)^2}$$

$$= \frac{-2\cos 2z - 2}{(1 - \cos 2z)}$$

$$u_y = \frac{(\cosh 2y - \cos 2x)(0) - \sin 2x[2\sin 2y]}{[\cosh 2y - \cos 2x]^2}$$

$$\Rightarrow u_y(z, 0) = 0$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule], where C is a complex constant.

$$f(z) = \int (-\cos ec^2 z) dz - i \int 0 dz + C$$

= $\cot z + C$

Example: 1.26 Show that the function $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic and determine its conjugate. Also find f(z)

Solution:

Given
$$u = \frac{1}{2}\log(x^2 + y^2)$$

 $u_x = \frac{1}{2}\frac{1}{(x^2+y^2)}(2x) = \frac{x}{x^2+y^2},$
 $\Rightarrow u_x(z,0) = \frac{z}{z^2} = \frac{1}{z}$
 $u_{xx} = \frac{(x^2+y^2)[1]-x[2x]}{[x^2+y^2]^2} = \frac{x^2+y^2-2x^2}{[x^2+y^2]^2} = \frac{y^2-x^2}{[x^2+y^2]^2} \dots (1)$
 $u_y = \frac{1}{2}\frac{1}{x^2+y^2}(2y) = \frac{y}{x^2+y^2}$
 $\Rightarrow u_y(z,0) = 0$
 $u_{yy} = \frac{(x^2+y^2)[1]-y[2y]}{[x^2+y^2]^2} = \frac{x^2-y^2}{[x^2+y^2]^2} \dots (2)$

To prove u is harmonic:

$$\therefore u_{xx} + u_{yy} = \frac{(y^2 - x^2) + (x^2 - y^2)}{[x^2 + y^2]^2} = 0 \qquad by (1)\&(2)$$

 $\Rightarrow u$ is harmonic.

To find f(z):

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule],

Where, C is a complex constant.

$$f(z) = \int \frac{1}{z} dz - i \int 0 dz + C$$
$$= \log z + C$$

To find v:

$$f(z) = \log (re^{i\theta}) \qquad [\because z = re^{i\theta}]$$

$$u + iv = \log r + \log e^{i\theta} = \log r + i\theta$$

$$\Rightarrow u = \log r, v = \theta$$

Note:
$$z = x + iy$$

 $r = |z| = \sqrt{x^2 + y^2}$
 $\log r = \frac{1}{2} \log(x^2 + y^2)$

$$\tan \theta = \frac{y}{x}$$

$$\theta = \tan^{-1} \left(\frac{y}{x}\right) \qquad i.e., v = \tan^{-1} \left(\frac{y}{x}\right)$$

Example: 1.27 Construct an analytic function f(z) = u + iv, given that

$$u = e^{x^2 - y^2} \cos 2xy$$
. Hence find v.

[A.U D15/J16, R-08]

Solution:

Given
$$u = e^{x^2 - y^2} \cos 2xy = e^{x^2} e^{-y^2} \cos 2xy$$

 $u_x = e^{-y^2} [e^{x^2} (-2y \sin 2xy) + \cos 2xy \ e^{x^2} 2x]$
 $u_x(z,0) = 1 [e^{z^2} (0) + 2ze^{z^2}] = 2ze^{z^2}$
 $u_y = e^{x^2} [e^{-y^2} (-2x \sin 2xy) + \cos 2xye^{-y^2} (-2y)]$
 $u_y(z,0) = e^{z^2} [0+0] = 0$
 $f(z) = \int u_x (z,0) dz - i \int u_y (z,0) dz + C$ [by Milne–Thomson rule]
 $= \int 2z e^{z^2} dz + C$
 $= 2 \int z e^{z^2} dz + C$
put $t = z^2$, $dt = 2z dz$
 $= \int e^t dt + C$
 $= e^t + C$
 $f(z) = e^{z^2} + C$

To find v:

$$u + iv = e^{(x+iy)^2} = e^{x^2 - y^2 + i \cdot 2xy} = e^{x^2 - y^2} e^{i2 \cdot xy}$$
$$= e^{x^2 - y^2} \left[\cos(2xy) + i\sin(2xy) \right]$$
$$v = e^{x^2 - y^2} \sin 2xy \quad [\because \text{equating the imaginary parts}]$$

Example: 1.28 Find the regular function whose imaginary part is $e^{-x}(x\cos y + y\sin y)$.

Solution:

Given
$$v = e^{-x}(x\cos y + y\sin y)$$

 $v_x = e^{-x}[\cos y] + (x\cos y + y\sin y)[-e^{-x}]$
 $v_x(z,0) = e^{-z} + (z)(-e^{-z}) = (1-z)e^{-z}$
 $v_y = e^{-x}[-x\sin y + (y\cos y + \sin y(1))]$
 $v_x(z,0) = e^{-z}[0+0+0] = 0$
 $\therefore f(z) = \int v_y(z,0)dz + i \int v_x(z,0)dz + C$ [by Milne–Thomson rule]

Where, C is a complex constant. 24MA201-COMPLEX VARIABLES AND TRANSFORMS

$$f(z) = \int 0 dz + i \int (1 - z)e^{-z} dz + C$$

$$= i \int (1 - z)e^{-z} dz + C$$

$$= i \left[(1 - z) \left[\frac{e^{-z}}{-1} \right] - (-1) \left[\frac{e^{-z}}{(-1)^2} \right] \right] + C$$

$$= i [-(1 - z)e^{-z} + e^{-z}] + C$$

$$= i z e^{-z} + C$$

Example: 1.29 In a two dimensional flow, the stream function is $\psi = tan^{-1} \left(\frac{y}{x} \right)$. Find the velocity potential φ .

Solution:

Given
$$\psi = tan^{-1}(y/x)$$

We should denote, ϕ by u and ψ by v

To find φ :

$$f(z) = \log (re^{i\theta}) \qquad [\because z = re^{i\theta}]$$

$$u + iv = \log r + \log e^{i\theta}$$

$$u + iv = \log r + i\theta$$

$$\Rightarrow u = \log r$$

$$\Rightarrow u = \log \sqrt{x^2 + y^2}$$

$$= \frac{1}{2} \log(x^2 + y^2)$$

So, the velocity potential φ is

$$\varphi = \frac{1}{2}\log(x^2 + y^2)$$

Note: In two dimensional steady state flows, the complex potential

$$f(z) = \varphi(x, y) + i\psi(x, y)$$
 is analytic.

Example: 1.30 If w = u + iv is an analytic function and $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$, find u.

Solution:

Given
$$v = x^2 - y^2 + \frac{x}{x^2 + y^2}$$

$$v_{x} = 2x - 0 + \frac{(x^{2} + y^{2})(1) - x(2x)}{(x^{2} + y^{2})^{2}}$$

$$= 2x + \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}}, \quad v_{x}(z, 0) = 2z + \frac{(-z^{2})}{(z^{2})}$$

$$\Rightarrow v_{x}(z, 0) = 2z - \frac{1}{z^{2}}$$

$$v_{y} = 0 - 2y + \frac{0 - x(2y)}{(x^{2} + y^{2})^{2}}$$

$$= 0 - 2y - \frac{2xy}{(x^{2} + y^{2})^{2}}$$

$$\Rightarrow v_{y}(z, 0) = 0$$

 $f(z) = \int v_{y}(z,0)dz + i \int v_{x}(z,0)dz + C$ [by Milne–Thomson rule]

Where, C is a complex constant.

$$f(z) = \int 0dz + i \int \left(2z - \frac{1}{z^2}\right) dz + C$$

$$= i \left[2\frac{z^2}{2} + \frac{1}{z}\right] + C \qquad \left[\because \int \frac{-1}{z^2} dz = \frac{1}{z}\right]$$

$$= i \left[z^2 + \frac{1}{z}\right] + C$$

Example: 1.31 If f(z) = u + iv is an analytic function and $u - v = e^x(\cos y - \sin y)$, find f(z) in terms of z.

Solution:

Given
$$u - v = e^x(\cos y - \sin y)$$
, ...(A)

Differentiate (A) p.w.r. to x, we get

$$u_x - v_x = e^x(\cos y - \sin y),$$

 $u_x(z, 0) - v_x(z, 0) = e^z$...(1)

Differentiate (A) p.w.r. to y, we get

 $= e^z + C$

$$u_{y} - v_{y} = e^{x}(-\sin y - \cos y)$$

$$u_{y}(z,0) - v_{y}(z,0) = e^{z}[-1]$$
i. e., $u_{y}(z,0) - v_{y}(z,0) = -e^{z}$

$$-v_{x}(z,0) - u_{x}(z,0) = -e^{z}$$
... (2) [by C-R conditions]
$$(1) + (2) \Rightarrow -2v_{x}(z,0) = 0$$

$$\Rightarrow v_{x}(z,0) = 0$$

$$(1) \Rightarrow u_{x}(z,0) = e^{z}$$

$$f(z) = \int u_{x}(z,0)dz + i \int v_{x}(z,0)dz + C$$
 [by Milne-Thomson rule]
$$f(z) = \int e^{z}dz + i0 + C$$

Example: 1.32 Find the analytic functions f(z) = u + iv given that

(i)
$$2u + v = e^x(\cos y - \sin y)$$

(ii)
$$u-2v=e^x(\cos y-\sin y)$$

Solution:

Given (i)
$$2u + v = e^x(\cos y - \sin y)$$
 ... (A)

Differentiate (A) p.w.r. to x, we get

$$2u_x + v_x = e^x(\cos y - \sin y)$$

$$2u_x - u_y = e^x(\cos y - \sin y)$$
 [by C-R condition]

Differentiate (A) p.w.r. to y, we get

$$2u_y + v_y = e^x[-\sin y - \cos y]$$

$$2u_y + u_x = e^x \left[-\sin y - \cos y \right]$$
 [by C-R condition]

$$2u_{y}(z,0) + u_{x}(z,0) = e^{z}(-1) = -e^{z} \qquad ...(2)$$

$$(1) \times (2) \Rightarrow 4u_x(z,0) - 2u_y(z,0) = 2e^z \qquad \dots (3)$$

$$(2) + (3) \quad \Rightarrow \, 5u_x(z,0) = e^z$$

$$\Rightarrow u_x(z,0) = \frac{1}{5}e^z$$

(1)
$$\Rightarrow u_y(z,0) = \frac{2}{5}e^z - e^z = -\frac{3}{5}e^z$$

$$\Rightarrow u_y(z,0) = -\frac{3}{5}e^z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex constant.

$$f(z) = \int \frac{1}{5} e^z dz - i \int -\frac{3}{5} e^z dz + C$$
$$= \frac{2}{5} e^z + \frac{3}{5} i e^z + C$$
$$= \frac{1+3i}{5} e^z + C$$

(ii)
$$u - 2v = e^x(\cos y - \sin y)$$
 ... (B)

Differrentiate (B) p.w.r. to x, we get

$$u_x - 2v_x = e^x(\cos y - \sin y)$$

$$u_x + 2u_y = e^x(\cos y - \sin y)$$
 [by C-R condition]

$$u_x(z,0) + 2u_y(z,0) = e^z$$
 ...(1)

Differentiate (B) p.w.r. to y, we get

$$u_{y} - 2v_{y} = e^{x} [-\sin y - \cos y]$$

$$u_y - 2u_x = e^x [-\sin y - \cos y]$$
 [by C-R condition]

$$u_{\nu}(z,0) - 2u_{x}(z,0) = -e^{z}$$
 ...(2)

$$(1) \times (2) \implies 2u_x(z,0) + 4u_y(z,0) = 2e^z \qquad \dots (3)$$

$$(2) + (3) \Rightarrow 5u_y(z, 0) = e^z$$
$$\Rightarrow u_y(z, 0) = \frac{1}{5}e^z$$

(1)
$$\Rightarrow u_x(z,0) = -\frac{2}{5}e^z + e^z$$
$$= \frac{3}{5}e^z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex constant.

$$f(z) = \int \frac{3}{5} e^z dz - i \int \frac{1}{5} e^z dz + C$$

= $\frac{3}{5} e^z - i \frac{1}{5} e^z + C = \frac{3-i}{5} e^z + C$

Example: 3.33 Determine the analytic function f(z) = u + iv given that

$$3u + 2v = y^2 - x^2 + 16xy$$

Solution:

Given
$$3u + 2v = y^2 - x^2 + 16xy$$
 ...(A)

Differentiate (A) p.w.r. to x, we get

$$3u_x + 2v_x = -2x + 16y$$

$$3u_x - 2u_y = -2x + 16y$$
 [by C-R condition]

$$3u_x(z,0) - 2u_y(z,0) = -2z$$
 ...(1)

Differentiate (A) p.w.r. to y, we get

$$3u_y + 2v_y = 2y + 16x$$

$$3u_y + 2u_x = 2y + 16x$$
 [by C-R condition]

$$3u_{y}(z,0) + 2u_{x}(z,0) = 16z$$
 ...(2)

$$(1) \times (2) \quad \Rightarrow 6u_x(z,0) - 4u_y(z,0) = -4z \qquad \dots (3)$$

$$(2) \times (3) \Rightarrow 9u_{\nu}(z,0) + 6u_{\nu}(z,0) = 48z$$

$$(3) - (4) \Rightarrow -13u_y(z, 0) = -52z$$
$$\Rightarrow u_y(z, 0) = 4z$$

(1)
$$\Rightarrow 3u_x(z,0) = 8z - 2z = 6z$$

$$\Rightarrow u_x(z,0) = 2z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

where C is a complex constant.

$$f(z) = \int 2zdz - i \int 4zdz + C$$

$$= 2\frac{z^2}{2} - i\frac{4z^2}{2} + C$$

$$= z^2 - i2z^2 + C$$

$$= (1 - i2)z^2 + C$$

Example: 3.34 Find an analytic function f(z) = u + iv given that

$$2u + 3v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

Solution:

Given
$$2u + 3v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

Differentiate p.w.r. to x, we get

$$\begin{aligned} 2u_x + 3v_x &= \frac{(\cosh 2y - \cos 2x)(2\cos 2x) - \sin 2x (2\sin 2x)}{(\cosh 2y - \cos 2x)^2} \\ 2u_x - 3u_y &= \frac{(\cosh 2y - \cos 2x)(2\cos 2x) - \sin 2x (2\sin 2x)}{(\cosh 2y - \cos 2x)^2} \quad \text{[by C-R condition]} \\ 2u_x(z,0) - 3u_y(z,0) &= \frac{2\cos 2z(1 - \cos 2z) - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{2\cos 2z - 2\cos^2 2z - 2\sin^2 2z}{(1 - \cos 2z)^2} \\ &= \frac{-2}{(1 - \cos 2z)^2} = \frac{-2}{1 - \cos 2z} \\ 2u_x(z,0) - 3u_y(z,0) &= -\cos ec^2 z \end{aligned} \qquad \dots (1)$$

Differentiate p.w.r. to y, we get

$$2u_{y} + 3v_{y} = \frac{0 - \sin 2x(\sinh 2y)}{(\cosh 2y - \cos 2x)^{2}} (2)$$

$$2u_{y} + 3u_{x} = \frac{0 - \sin 2x(\sinh 2y)}{(\cosh 2y - \cos 2x)^{2}} (2)$$
 [by C – R condition]
$$2u_{y}(z, 0) + 3u_{x}(z, 0) = 0$$
 ... (2)

Solving (1) & (2) we get,

$$\Rightarrow u_x(z, 0) = -\frac{2}{13} \csc^2 z$$
$$\Rightarrow u_y(z, 0) = -\frac{2}{13} \csc^2 z$$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$
 [by Milne–Thomson rule]

Where, C is a complex

$$f(z) = \int \left(\frac{-2}{13}\right) \csc^2 z \, dz - i \int \left(\frac{3}{13}\right) \csc^2 z \, dz + C$$
$$= \left(\frac{2}{13}\right) \cot z + \left(\frac{3}{13}\right) \cot z + C$$
$$= \frac{2+3i}{i3} \cot z + C$$

Example: 3.35 Find the analytic function f(z) = u + iv given that

$$2u + 3v = e^x(\cos y - \sin y)$$

Solution:

Given
$$2u + 3v = e^x(\cos y - \sin y)$$

Differentiate p.w.r. to x, we get

$$2u_x + 3v_x = e^x(\cos y - \sin y)$$

$$2u_x - 3u_y = e^x(\cos y - \sin y) \quad \text{[by C-R condition]}$$

$$2u_x(z, 0) - 3u_y(z, 0) = e^z \qquad \dots (1)$$

Differentiate p.w.r. to y, we get

$$2u_y + 3v_y = e^x [-\sin y - \cos y]$$

$$2u_y + 3u_x = -e^x [\sin y + \cos y] \quad \text{[by C-R condition]}$$

$$2u_y(z, 0) + 3u_x(z, 0) = -e^z \qquad \dots (2)$$

$$(1) \times (3) \quad \Rightarrow 6u_x(z,0) - 9u_y(z,0) = 3e^z \qquad \dots (3)$$

$$(2) \times 2 \quad \Rightarrow \ 6u_x(z,0) + 4u_y(z,0) = -2e^z \qquad \dots (4)$$

(3) - (4)
$$\Rightarrow -13u_y(z,0) = 5e^z$$

 $\Rightarrow u_y(z,0) = -\frac{5}{13}e^z$

(1)
$$\Rightarrow 2u_{x}(z,0) + \frac{15}{13}e^{z} = e^{z}$$

 $2u_{x}(z,0) = e^{z} - \frac{15}{13}e^{z} = -\frac{2}{13}e^{z}$
 $\Rightarrow u_{x}(z,0) = -\frac{1}{13}e^{z}$

$$f(z) = \int u_x(z,0)dz - i \int u_y(z,0)dz + C$$

$$\therefore f(z) = \int \frac{-1}{13} e^z dz - i \int \left(\frac{-5}{13}\right) dz + C$$
$$= \frac{-1}{13} e^z + \frac{5}{13} e^z i + C = \frac{-1+5i}{13} e^z + C$$