KERNEL ARCHITECTURE (MONOLITHIC, MICROKERNEL)

Kernel:

The kernel is the core component of operating system, that manages the computer
resources. It acts as a bridge between the hardware and the software that ensure everything
runs smoothly. It enables applications to interact with the computer's resources like memory,
CPU, and input/output devices.

When we switch on the computer, Kernel is the first part of the OS to load into the
computer's main memory (RAM) by the bootloader. Kernel remains active from the system
start up to until its is shutdown. Kernel is the only program that is always active while the
system is running.

Operating system can be implemented with the help of various structures. The
structure of the OS depends mainly on how the various common components of the operating
system are interconnected and melded into the kernel

The different structure of the operating system are
1. Simple Structure
Monolithic Structure
Layered Approach
Microkernels
Modules
Hybrid Systems

OOk own

1. Monolithic Structure:
The kernel performs all function such as file management, CPU scheduling, memory
management, I/O management and other operating system functions through system calls.
All the functional component are included into one single kernel. Example : linux,
unix, windows and macOS

Users

Shells and Commands
Compilers and Interpreters
System Libraries

System Call Interface to the Kernel

Memory

Signals handling File Management Management

Kernel Interface to Hardware

Terminal

Device Controllers | Memory Controllers
Controllers

Fig: Unix - Monolithic Structure

The Linux operating system is based on UNIX and is structured similarly.
The Linux kernel is monolithic in that it runs entirely in kernel mode in a single address
space. It have a modular design that allows the kernel to be modified during run time.
Advantage:
e Simple and easy to implement.

e Execution is fast due to direct access to all services
Disadvantage:
Reliability: If the user program fails, the entire system may crash.
Complexity: Hard to maintain and debug
Limited Extensibility: Adding new functional component is difficult.
Less protection.

2. Micro-kernel:

In this structural designs only the essential components are kept in the kernel and all
non-essential components are implemented as system and user programs. This result in a
smaller kernel called the micro-kernel. Example: QNX, Minix, and Symbian

Essential functions/components such as basic process and memory management,
inter-process communication and other services such as file systems, device drivers

Here communication between programs is done with the help of message passing.

Application : Device User
File System)
Program ¥ Driver Mode

A A

Messages : Messages

Kernel
Mode

CPU
Scheduling

Interprocess
Communication

Memory
Management

Microkernel

Hardware

In the mid-1980s, researchers at Carnegie Mellon University developed an
operating system called Mach that modularized the kernel using the microkernel
approach.

The best-known illustration of a microkernel operating system is Darwin, the kernel
component of the macOS and iOS operating systems. Darwin, consists of two kernels, one of
which is the Mach microkernel

Advantage:

e Small memory space is needed for the kernel.
Modularity: Easy to maintain and debugging
Easy update
No direct access to the hardware, which decreases the system crash.
Abstract (layers don’t have the idea about other layers ie.) layers
implementation detail is hidden)
e Extensibility: Adding new functional component is easy.

Flexibility : Easy to add or remove functional components without affecting
the entire system.

More secure and reliable.

Portability: More portable than monolithic because most of the operating
system services run outside the kernel space.

Disadvantage:

Performance Overhead: One user program communicates with another
application/user program through IPC with the help of message passing which
is an overhead or burden for kernel.

Complexity: Designing and implementing the communication mechanisms
between user-space processes and the kernel can be more complex.
Development Difficulty: This architecture can be more difficult than
developing monolithic kernels because it requires more attention in
designing the communication and synchronization mechanisms.

Higher Resource Usage: Microkernel architecture can use more system
resources, such as memory and CPU, than monolithic kernels because it
requires more communication and synchronization mechanisms

