
UNIT – 3 

Optimization Techniques in Data Science 

 

Greedy Algorithms  

A greedy algorithm builds a solution step by step, choosing the best local option at each step, 

hoping it leads to a global optimum. 

Key Properties 

 Greedy choice property – a locally optimal choice leads to a global solution 

 Optimal substructure – optimal solution contains optimal sub-solutions 

 

Greedy Algorithm for Feature Selection 

Feature selection chooses a subset of relevant features to improve model performance and 

reduce complexity. 

Greedy Idea 

At each step, add (or remove) the feature that gives the maximum improvement in model 

performance. 

 

Forward Selection (Greedy) 

Start with no features, add one feature at a time. 

Steps 

1. Start with an empty feature set 

2. Evaluate each remaining feature 

3. Select the feature that improves accuracy the most 

4. Repeat until no improvement 

Example 

Features = {Age, Income, Education, Gender} 

Step Selected Feature Reason 

1 Income Highest accuracy gain 

2 Education Best improvement with Income 



3 Stop No further gain 

Greedy decision: pick best feature at each step 

 

Backward Elimination (Greedy) 

Start with all features, remove the least useful one. 

Used Metrics 

 Accuracy 

 Information Gain 

 Mutual Information 

 Correlation 

Advantage 

 Simple 

 Fast for large datasets 

Limitation: may miss best global feature combination 

 

Greedy Algorithm for Job Scheduling 

Job scheduling aims to maximize profit or minimize lateness. 

 

Job Sequencing with Deadlines 

Each job has: 

 Deadline 

 Profit 

 Unit execution time 

Greedy Strategy 

Sort jobs by decreasing profit 

Schedule each job as late as possible before its deadline 

Example 

Job Deadline Profit 

J1 2 100 



J2 1 19 

J3 2 27 

J4 1 25 

Step 1: Sort by profit 

J1 → J3 → J4 → J2 

Step 2: Schedule 

 J1 at slot 2 

 J3 at slot 1 

 J4 (no slot) 

 J2 

 Maximum profit = 127 

Why Greedy Works Here 

 Higher profit jobs should be scheduled first 

 Delaying jobs preserves future slots 

 

Greedy Algorithms in Clustering Initialization 

Clustering initialization affects speed and quality of clustering. 

 

Greedy Initialization for k-Means 

Instead of random centers, choose informative centroids greedily. 

 

k-Means++ (Greedy-based) 

This is a well-known greedy initialization method. 

Steps 

1. Choose first centroid randomly 

2. Compute distance of all points to nearest centroid 

3. Select next centroid farthest from existing centroids 

4. Repeat until k centroids chosen 

Greedy choice: pick point with maximum distance 



Why It’s Greedy 

 Each step locally maximizes distance 

 Reduces poor cluster initialization 

Example 

For k = 3: 

1. Pick first centroid randomly 

2. Pick second farthest from first 

3. Pick third farthest from both 

Leads to: 

 Faster convergence 

 Better cluster quality 

 

Comparison Table 

Application Greedy Choice Goal 

Feature Selection Best feature at each step Maximize accuracy 

Job Scheduling Highest profit job first Maximize profit 

Clustering Init Farthest data point Improve clustering 

 

Advantages & Limitations 

Advantages 

 Simple 

 Fast 

 Easy to implement 

Limitations 

 No guarantee of global optimum 

 Sensitive to initial choices 

 

 



Dynamic Programming (DP) 

Definition 

Dynamic Programming is an algorithmic technique used to solve complex problems by: 

 Breaking them into overlapping subproblems 

 Solving each subproblem once 

 Storing results to avoid recomputation 

Key Properties 

1. Optimal substructure – optimal solution depends on optimal sub-solutions 

2. Overlapping subproblems – same subproblems appear repeatedly 

 

Dynamic Programming in Sequence Prediction 

What is Sequence Prediction? 

Predicting the next element in a sequence using previous values. 

Examples: 

 Stock prices 

 Weather data 

 Sensor readings 

 

How DP is Used 

DP stores results of previous predictions and reuses them. 

Example 

Fibonacci-based sequence: 

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) 

 

Without DP → exponential time 

With DP → linear time using a table 

 

DP Approach 

1. Define state: dp[t] = best prediction up to time t 

2. Define recurrence relation 



3. Store computed values 

Used in: 

 Hidden Markov Models (HMMs) 

 Dynamic Time Warping (DTW) 

 Sequential decision models 

 

Dynamic Programming in Time Series Analysis 

Time Series Analysis 

Analysis of data points collected over time intervals. 

 

DP Applications 

1. Optimal Segmentation 

Divide time series into meaningful segments. 

𝑑𝑝[𝑡] = min⁡
𝑘<𝑡

(𝑑𝑝[𝑘] + 𝑐𝑜𝑠𝑡(𝑘, 𝑡)) 

 

2. Change Point Detection 

Detect when statistical properties change. 

3. Dynamic Time Warping (DTW) 

Align two time series with different speeds. 

 

Why DP is Suitable 

 Time dependencies 

 Repeated sub-calculations 

 Optimal decisions depend on past values 

 

Dynamic Programming in NLP 

NLP Tasks Using DP 

Dynamic programming is core to NLP algorithms. 

 



Sequence Tagging 

Examples: 

 Part-of-Speech (POS) tagging 

 Named Entity Recognition (NER) 

Viterbi Algorithm (DP-based) 

Finds the most probable sequence of tags. 

𝑑𝑝[𝑡][𝑠] = max⁡(𝑑𝑝[𝑡 − 1][𝑠′] × 𝑃(𝑠 ∣ 𝑠′) × 𝑃(𝑤 ∣ 𝑠)) 

 

 

String Similarity 

 Edit Distance (Levenshtein Distance) 

 Spell checking 

 DNA sequence comparison 

Edit Distance DP Table 

𝑑𝑝[𝑖][𝑗] = min⁡{

𝑑𝑝[𝑖 − 1][𝑗] + 1

𝑑𝑝[𝑖][𝑗 − 1] + 1
𝑑𝑝[𝑖 − 1][𝑗 − 1] + 𝑐𝑜𝑠𝑡

 

 

 

Parsing & Language Modeling 

 CKY parsing 

 Word segmentation 

 Text summarization 

 

 Advantages of DP in Data Science 

 Efficient for sequential problems 

 Ensures optimal solution 

 Reduces time complexity drastically 

 

Divide & Conquer (D&C) 



Definition 

Divide & Conquer solves a problem by: 

1. Dividing it into smaller subproblems 

2. Conquering (solving) each subproblem independently 

3. Combining the solutions 

 

Divide & Conquer for Data Partitioning 

Data Partitioning 

Splitting large datasets into manageable chunks. 

 

Examples 

 Divide dataset into subsets 

 Process each subset independently 

 Merge results 

 

Common Algorithms 

Algorithm Role 

Merge Sort Data partitioning + merging 

Quick Sort Partition-based processing 

KD-Trees Multidimensional data partitioning 

 

Benefit 

 Reduces memory usage 

 Improves cache performance 

 

Divide & Conquer for Parallel Computation 

Why D&C Works Well with Parallelism 

 Subproblems are independent 



 Can be executed simultaneously 

 

Examples in Data Science 

1. Parallel Sorting 

 Each processor sorts a subset 

 Results merged later 

2. MapReduce 

 Map = divide 

 Reduce = combine 

3. Parallel Matrix Multiplication 

Split matrices into blocks and compute in parallel. 

 

Example Flow 

1. Split dataset into n parts 

2. Process each part on different processors 

3. Merge partial results 

 

9. Dynamic Programming vs Divide & Conquer 

Aspect Dynamic Programming Divide & Conquer 

Subproblems Overlapping Independent 

Storage Uses memoization Usually no storage 

Best For Sequential problems Parallel tasks 

Examples NLP, time series Sorting, MapReduce 

 

 

Application 

1.Shortest Sequence Alignment (Dynamic Programming) 

 

 



What is Sequence Alignment? 

Sequence alignment is the process of arranging two sequences (strings, DNA, words) to 

identify similarities by allowing: 

 Matches 

 Mismatches 

 Gaps (insertions/deletions) 

Goal: Find the alignment with minimum cost (or maximum similarity). 

This is also called minimum edit distance or optimal alignment. 

 

Why Dynamic Programming? 

 Alignment decisions depend on previous characters 

 Same sub-alignments are computed repeatedly 

 DP ensures optimal global alignment 

 

Shortest (Minimum-Cost) Sequence Alignment Problem 

Given two sequences: 

 𝑋 = 𝑥1𝑥2. . . 𝑥𝑚 

 𝑌 = 𝑦1𝑦2. . . 𝑦𝑛 

Define costs: 

 Match = 0 

 Mismatch = 1 

 Gap (insertion/deletion) = 1 

 

DP Formulation 

State Definition 

𝑑𝑝[𝑖][𝑗] = minimum cost to align 𝑋[1. . 𝑖] and 𝑌[1. . 𝑗] 

 

Recurrence Relation 

𝑑𝑝[𝑖][𝑗] = min⁡{

𝑑𝑝[𝑖 − 1][𝑗] + 1 (deletion)

𝑑𝑝[𝑖][𝑗 − 1] + 1 (insertion)

𝑑𝑝[𝑖 − 1][𝑗 − 1] + 𝑐𝑜𝑠𝑡 (match/mismatch)

 



 

Where: 

 cost = 0 if 𝑥𝑖 = 𝑦𝑗 

 cost = 1 if 𝑥𝑖 ≠ 𝑦𝑗 

 

Base Conditions 

 𝑑𝑝[0][𝑗] = 𝑗(insert all characters) 

 𝑑𝑝[𝑖][0] = 𝑖(delete all characters) 

 

Example 

Align: 

 X = "CAT" 

 Y = "CUT" 

Final DP value: 

𝑑𝑝[3][3] = 1 

 

Only one substitution (A → U) needed 

Shortest sequence alignment achieved 

 

Applications 

 Bioinformatics (DNA / protein alignment) 

 Spell checking 

 Plagiarism detection 

 NLP string similarity 

 Speech recognition 

 

2. Optimal Substructure Identification 

 

 



What is Optimal Substructure? 

A problem has optimal substructure if: 

The optimal solution of the problem contains optimal solutions to its subproblems. 

This property is mandatory for applying Dynamic Programming. 

 

Identifying Optimal Substructure 

Steps 

1. Define the global problem 

2. Break it into smaller subproblems 

3. Show that solving subproblems optimally leads to a global optimum 

 

Optimal Substructure in Sequence Alignment 

Explanation 

If the best alignment of: 

 𝑋[1. . 𝑖]and 𝑌[1. . 𝑗] 

ends with: 

 a match, insertion, or deletion 

then the rest of the alignment must be the best possible alignment of: 

 𝑋[1. . 𝑖 − 1]and 𝑌[1. . 𝑗 − 1] 

 or 𝑋[1. . 𝑖 − 1]and 𝑌[1. . 𝑗] 

 or 𝑋[1. . 𝑖]and 𝑌[1. . 𝑗 − 1] 

Otherwise, the solution would not be optimal. 

Hence, sequence alignment satisfies optimal substructure 

 

Other Examples of Optimal Substructure 

Problem Substructure 

Shortest Path Shortest subpaths 

Knapsack Optimal weight combinations 



Edit Distance Optimal prefix alignment 

Matrix Chain Multiplication Optimal matrix grouping 

 

Relationship Between Both Concepts 

Concept Role 

Optimal Substructure Justifies DP use 

Sequence Alignment Practical DP application 

DP Table Stores optimal sub-solutions 

Recurrence Relation Exploits substructure 

 


