
24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CONTROL STRUCTURES:

 Control statements control the flow of execution in a java program, based on data values

and conditional logic used.

 There are three main categories of control flow statements;

 Branching Statements : if, if-else and switch.

 Looping statements : while, do-while and for.

 Jumping statements : break, continue, return.

a) BRANCHING STATEMENTS

The selection statements checks the condition only once for the program execution.

1) If Statement:

 The if statement executes a block of code only if the specified expression is true.

 If the value is false, then the if block is skipped and execution continues with the rest

of the program.

The simple if statement has the following syntax: if

(<conditional expression>)

<statement action>

The following program explains the if statement.

public class programIF

{

 public static void main(String[] args)

 {

 int a = 10, b = 20;

 if (a > b)

 System.out.println(“a > b”);

 if (a < b)

 System.out.println(“a < b”);

 }

}

2) The If-else Statement

 The if/else statement is an extension of the if statement.

 If the condition in the if statement fails, the statements in the else block are executed.

 The if-else statement has the following syntax:

if (<conditional expression>)

<statement action>

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 else

<statement action>

The following program explains the if-else statement.

public class ProgramIfElse

{

 public static void main(String[] args)

 {

 int a = 10, b = 20;

 if (a > b)

 {

 System.out.println(“a > b”);

 }

 else

 {

 System.out.println(“a < b”);

 }

 }

}

3) Switch Case Statement

 The switch case statement is also called as multi-way branching statement with several

choices.

 The switch statement begins with a keyword, followed by an expression that equates to

a no long integral value.

 After the controlling expression, there is a code block that contains zero or more labeled

cases.

 Each label must equate to an integer constant and each must be unique. When the switch

statement executes, it compares the value of the controlling expression to the values of each

case label.

 The program will select the value of the case label that equals the value of the

controlling expression and branch down that path to the end of the code block.

 If none of the case label values match, then none of the codes within the switch

statement code block will be executed.

 Java includes a default label to use in cases where there are no matches.

 A nested switch within a case block of an outer switch is also allowed.

 When executing a switch statement, the flow of the program falls through to the next

case.

 So, after every case, you must insert a break statement.

The syntax of switch case is given as follows:

switch (<non-long integral expression>)

{

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

case label1:

 <statement1>

case label2:

 <statement2>

 …

case labeln:

 <statementn>

default:

 <statement>

} // end switch

b) LOOPING STATEMENTS

Iteration statements execute a block of code for several numbers of times until the condition

is true.

i) While Statement

 The while statement is one of the looping constructs control statement that executes a block of

code while a condition is true.

 The loop will stop the execution if the testing expres- sion evaluates to false.

 The loop condition must be a boolean expression.

 The syntax of the while loop is

while (<loop condition>)

 <statements>

Example program

public class ProgramWhile

{

 public static void main(String[] args)

 {

 int count = 1;

 System.out.println(“Printing Numbers from 1 to 10”);

 while (count <= 10)

 {

 System.out.println(count++);}

 }

 }

}

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

(ii) Do-while Loop Statement

 The do-while loop is similar to the while loop, except that the test condition is performed

at the end of the loop instead of at the beginning.

 The do—while loop executes atleast once without checking the condition.

 It begins with the keyword do, followed by the statements that making up the body of

the loop.

 Finally, the keyword while and the test expression completes the do-while loop.

 When the loop condition becomes false, the loop is terminated and execution continues

with the statement immediately following the loop.

 The syntax of the do-while loop is

do

 <loop body>

while (<loop condition>);

The following program explains the do--while statement.

public class DoWhileLoopDemo

{

 public static void main(String[] args)

 {

 int count = 1;

 System.out.println(“Printing Numbers from 1 to 10”);

 do

 {

 System.out.println(count++);

 } while (count <= 10);

 }

}

(iii) For Loop

 The for loop is a looping construct which can execute a set of instructions for a specified

number of times. It’s a counter controlled loop.

 The syntax of the loop is as follows:

for (<initialization>; <loop condition>; <increment expression>)

 <loop body>

 initialization statement executes once before the loop begins.

 As long as the loop condition is true, the loop will continue. If condition is evaluated

as false the first time, the loop will never be executed.

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Increment (Update) expression that automatically executes after each repetition of the loop

body.

 All the sections in the for-header are optional. Any one of them can be left empty, but the

two semicolons are mandatory.

The following program explains the for statement.

public class ProgramFor

{

 public static void main(String[] args)

 {

 System.out.println(“Printing Numbers from 1 to 10”);

 for (int count = 1; count <= 10; count++)

 {

 System.out.println(count);

 }

 }

}

(iv) Jumping Statements:

Jumbing statements are used to transfer the flow of execution from one statement to another.

Continue Statement:

 A continue statement stops the current iteration of a loop (while, do or for) and causes

execution to resume at the top of the nearest enclosing loop.

 The continue statement can be used when you do not want to execute the remaining

statements in the loop, but you do not want to exit the loop itself.

The syntax of the continue statement is

continue; // the unlabeled form

continue <label>; // the labeled form

 It is possible to use a loop with a label and then use the label in the continue statement.

 The label name is optional, and is usually only used when you wish to return to the outermost

loop in a series of nested loops.

The following program explains the continue statement.

public class ProgramContinue

{

 public static void main(String[] args)

 {

 System.out.println(“Odd Numbers”);

 for (int i = 1; i <= 10; ++i)

 {

 if (i % 2 == 0)

 continue;

 System.out.println(i + “\t”);

24CS302 | OBJECT ORIENTED PROGRAMMING USING JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 }

 }

}

Break Statement:

 The break statement terminates the enclosing loop (for, while, do or switch statement).

 Break statement can be used when we want to jump immediately to the statement

following the enclosing control structure.

 As continue statement, can also provide a loop with a label, and then use the label in

break statement.

 The label name is optional, and is usually only used when you wish to terminate the

outermost loop in a series of nested loops.

The Syntax for break statement is as shown below;

break; // the unlabeled form

break <label>; // the labeled form

Example Program :

public class ProgramBreak

{

 public static void main(String[] args)

 {

 System.out.println(“Numbers 1 - 10”);

 for (int i = 1;; ++i)

 {

 if (i == 11)

 break;

// Rest of loop body skipped when i is even System.out.println(i + “\t”);

 }

 }

}

