
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

STRUCTURES:

Structure is a user defined data type that can store related information of different

data types. The major difference between array and structure is array can store only

information of same data type.

Declaration of Structure:

struct point

{

int x,y;

}p1;

struct point

{

int x,y;

};

int main(

{

struct point p1;

}

Initialization of Structure:

Structure members cannot be initialized with declaration

struct point

{

int x=0; //compiler error

int y=0; //compiler error

};

 Memory is allocated when variables are created struct members can be initialized

using curly braces {}.

struct point

{

int x,y;

}

int main()

{

struct point p1={0,1}

}

The structure member are accessed using dot(.) operator

struct point

{

int x,y;

};

int main ()

{

struct point p1={0,1};

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

p1.x=20;

printf(“x=%d, y=%d,p1.x,p1.y”);

return 0;

}

Example:

#include<stdio.h>

#include<conio.h>

struct point

{

int x,y;

};

int main()

{

Designated Initialization:

It allows structure members to be initialized in any order.

Array of Structure:

Like other primitive data types we can create an array of structures.

struct point arr[10]

arr[0].x=10;

arr[0].y=20;

printf(%d%d”,arr[0].x,arr[0].y);

return 0;

}

Structure using Pointer:

Like primitive data type we can have pointer to a structure member are accessed using

arrow (->) operator.

#include<stdio.h>

#include<conio.h>

struct point

{

int main()

{

struct point*p1={1,2};

struct point*p2=&p1;

printf(“%d%d”,p2->x,p2->y);

return0;

}

}

Output 1 2

