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3.6 NYQUIST STABILITY CRITERION 

Nyquist criterion is a graphical method of determining stability of feedback control 

systems by using the Nyquist plot of their open-loop transfer functions. 

Feedback transfer function 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

Poles and zeros of the open loop transfer function 

𝐺(𝑠)𝐻(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

1 + 𝐺(𝑠)𝐻(𝑠) =
(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛) + 𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

Number of closed loop poles – Number of zeros of 1+GH = Number of open loop poles 

1 + 𝐺(𝑠)𝐻(𝑠) =
(𝑠 − 𝑧𝑐1)(𝑠 − 𝑧𝑐2)… (𝑠 − 𝑧𝑐𝑚)

(𝑠 − 𝑝1)(𝑠 − 𝑝2)… (𝑠 − 𝑝𝑛)
 

where, zc1, zc2, ….., zcm = zeros of 1+G(s)H(s) 

These are also poles of the closed loop transfer function 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, |1 + 𝐺(𝑠)𝐻(𝑠)| =
|(𝑠 − 𝑧𝑐1)||(𝑠 − 𝑧𝑐2)|… |(𝑠 − 𝑧𝑐𝑚)|

|(𝑠 − 𝑝1)||(𝑠 − 𝑝2)|… |(𝑠 − 𝑝𝑛)|
 

𝐴𝑛𝑔𝑙𝑒, ∠1 + 𝐺(𝑠)𝐻(𝑠) =
∠(𝑠 − 𝑧𝑐1)∠(𝑠 − 𝑧𝑐2)…∠(𝑠 − 𝑧𝑐𝑚)

∠(𝑠 − 𝑝1)∠(𝑠 − 𝑝2)…∠(𝑠 − 𝑝𝑛)
 

The s-plane to 1+GH plane mapping phase angle of the 1+G(s)H(s) vector, 

corresponding to a point on the s-plane is the difference between the sum of the phase 

of all vectors drawn from zeros of 1+GH (closed loop poles) and open loops on the s 

plane. If this point s is moved along a closed contour enclosing any or all of the above 

zeros and poles, only the phase of the vector of each of the enclosed zeros or open-loop 

poles will change by 3600. The direction will be in the same sense of the contour 

enclosing zeros and in the opposite sense for the contour enclosing open-loop poles. A 

stability test for time invariant linear systems can also be derived in the frequency 

domain. It is known as Nyquist stability criterion. It is based on the complex analysis 

result known as Cauchy’s principle of argument. Note that the system transfer function 

is a complex function. By applying Cauchy’s principle of argument to the open-loop 

system transfer function, we will get information about stability of the closed-loop 
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system transfer function and arrive at the Nyquist stability criterion (Nyquist, 1932). 

The importance of Nyquist stability lies in the fact that it can also be used to determine 

the relative degree of system stability by producing the so-called phase and gain stability 

margins. These stability margins are needed for frequency domain controller design 

techniques. Only the essence of the Nyquist stability criterion is presented and the phase 

and gain stability margins are defined. The Nyquist method is used for studying the 

stability of linear systems with pure time delay. 

For a SISO feedback system the closed-loop transfer function is given by, 

𝑀(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

where, G(s) represents the system and H(s) is the feedback element. Since the system 

poles are determined as those values at which its transfer function becomes infinity, it 

follows that the closed-loop system poles are obtained by solving the following 

equation. 

1 + 𝐺(𝑠)𝐻(𝑠) = 0 = ∆(𝑠) 

which, in fact, represents the system characteristic equation. 

Principles of Argument 

When a closed contour in the s-plane encloses a certain number of poles and zeros of 

1+G(s)H(s) in the clockwise direction, the number of encirclements of the origin by the 

corresponding contour in the G(s)H(s) plane will encircle the point (-1,0) a number of 

times given by the difference between the number of its zeros and poles of 1+G(s)H(s) it 

enclosed on the s-plane. Let F(s) be an analytic function in a closed region of the complex 

plane given in figure 3.6.1 except at a finite number of points (namely, the poles of 

F(s)). It is also assumed that F(s) is analytic at every point on the contour. Then, as 

s travels around the contour in the s - plane in the clockwise direction, the function

 encircles the origin in the (Re{F(s)}, Im{F(s)}) - plane in the same direction times 

(see figure 4.3.1), with given by, 

N = Z – P 

where Z and P stand for the number of zeros and poles (including their multiplicities) of 

the function F(s) inside the contour. 

𝑎𝑟𝑔{𝐹(𝑠)} = (𝑍 − 𝑃)2𝜋 = 2𝜋𝑁 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

EE3503 CONTROL SYSTEMS 

 

Figure 3.6.1 s-plane and F(s) plane contours 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.27] 

Contour in the s-plane 

The Nyquist plot is a polar plot of the function D(s) = 1+G(s)H(s) when ‘s’ travels around 

the contour given in figure 3.6.2. 

 

Figure 3.6.2 Nyquist contour when the poles are on imaginary axis and at origin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

Phase and Gain Stability Margins 

Two important notions can be derived from the Nyquist diagram: phase and gain stability 

margins. The phase and gain stability margins are presented in figure 3.6.3. 
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Figure 3.6.3 Gain and Phase margin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

They give the degree of relative stability; in other words, they tell how far the given 

system is from the instability region. Their formal definitions are given by 

𝑃𝑀 = 180𝑜 + 𝑎𝑟𝑔{𝐺(𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)} 

𝐺𝑀(𝑑𝐵) = 20 log
1

|𝐺(𝑗𝜔𝑝𝑐)𝐻(𝑗𝜔𝑝𝑐)|
, (𝑑𝐵) 

where, ωgc and ωpc stand for gain and phase crossover frequency respectively. 

|𝐺(𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)| = 1 ⇒ 𝜔𝑔𝑐 

𝑎𝑟𝑔{𝐺(𝑗𝜔𝑝𝑐)𝐻(𝑗𝜔𝑝𝑐)} = 180𝑜 ⇒ 𝜔𝑝𝑐 

PROCEDURE FOR INVESTIGATING STABILITY USING NYQUIST CRITERION 

The following procedure can be followed to investigate the stability of closed loop system 

from the knowledge of open loop system, using Nyquist stability criterion. 

1. Choose a Nyquist contour as shown in figure, which encloses the entire right half s-

plane except the singular points. The Nyquist contour encloses all the right half s-

plane poles and zeros of G(s)H(s). [The poles on imaginary axis are singular points 

and so they are avoided by taking a detour around it as shown in figures. 

2. The Nyquist contour should be mapped in the G(s)H(s)-plane using the function 

G(s)H(s) to determine the encirclement -1 + j0 point in the G(s)H(s)-plane. The 
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Nyquist contour of the figure can be divided into four sections C1.C2.C3 and C4. The 

mapping of the four sections in the G(s)H(s)-plane can be carried sectionwise and then 

combined together to get entire G(s)H(s)-contour. 

3. In section C1, the value of ω varies from 0 to + infinite. The mapping of section C1 is 

obtained by letting s = jω in G(s)H(s) and varying ω from 0 to + infinite. 

The locus of G(jω)H(jω) as ω is varied from 0 to + infinite will be the G(s)H(s)-

contour in G(s)H(s)-plane corresponding to section  C1 in s-plane. This locus is the 

plot of G(jω)H(jω). There are three ways of mapping this section of G(s)H(s)-contour, 

they are, 

(i) Calculate the values of G(jω)H(jω) for various values of ω and sketch the actual 

locus of G(jω)H(jω). 

(or) 

(ii) Separate the real part and imaginary part of G(jω)H(jω). Equate the imaginary 

part to zero, to find the frequency at which the G(jω)H(jω) locus crosses real axis 

( to find phase crossover frequency). Substitute this frequency on real part and 

find the crossing point of the locus on real axis. Sketch the approximate locus of 

G(jω)H(jω) from the knowledge of type number and order of the system (or from 

the value of G(jω)H(jω) at ω = 0 and ω = infinite). 

(or) 

(iii) Separate the magnitude and phase of G(jω)H(jω). Equate the phase of 

G(jω)H(jω) to -180º and solve for ω. This value of ω is the phase crossover 

frequency and the magnitude at this frequency is the crossing point on real axis. 

Sketch the approximate root locus as mentioned in method (ii). 

4. The section C2 of Nyquist contour has a semicircle of infinite radius. Therefore, every 

point on section C2 has infinite magnitude but the argument varies from +π/2 to - π/2. 

Consider the loop transfer function in time constant form and with y number of poles 

at origin, as shown below. Let G(s)H(s) has m zeros & n poles including poles at 

origin. For practical systems, n>m. From the above two equations we can conclude 

that the section C2 of Nyquist contour in s-plane is mapped as circles/circular are 

around origin with radius tending to zero in the G(s)H(s)-plane.  
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5. In section C3, the value of ω varies from -∞ to 0. The mapping of section C3 is 

obtained by letting s=jω in G(s)H(s) and varying ω from -∞ to 0. The locus of 

G(jω)H(jω) as ω is varied from -∞ to 0 will be the G(s)H(s)-contour in G(s)H(s)-plane 

corresponding to section C3 in s-plane. This locus is the inverse polar plot of 

G(jω)H(jω). The inverse polar plot is given by the mirror image of polar plot with 

respect to real axis. 

6. The section C4 of Nyquist contour has a semicircle of zero radius. Therefore, every 

point on semicircle has zero magnitude but the argument varies from -π/2 to π/2. 

Hence the mapping of section C4 from s-plane to G(s)H(s)-plane can be obtained by 

letting in G(s)H(s) and varying θ from -π/2 to π/2. 

PERFORMANCE CRITERIA 

For ordinary random inputs (i.e. inputs such that the error E is a stationary random 

function of time t), it is usual to adopt the mean -square- error as the performance 

criterion. This is the analogue of integral- square-error for simple transient inputs. 


