
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT II COMPILE AND BUILD USING MAVEN & GRADLE 6

 Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build

 phases(compile build, test, package) Maven Profiles, Maven repositories(local, central,

 global),Maven plugins, Maven create and build Artifacts, Dependency management,

 Installation of Gradle, Understand build using Gradle

 GRADLE

 Gradle is an open source build automation tool used primarily for Java projects,

 that automates the creation of software build including the process of compile (converting

 to binary), test (executing automated process), package (bundling) and deploy (publishing

 it into shared, central repository).

 Gradle can handle multiple languages — including Python, JavaScript, C/C++,

 and others through specific plugins and task definitions. It was launched in 2007 but

 released in 2009. Gradle overcomes the drawbacks of maven and Ant.

 Gradle is written in Groovy language for its build scripts. Groovy is a powerful, dynamic,

 and scripting-friendly programming language for the Java platform. It’s often called

 “Java’s flexible cousin” because:

 ● It runs on the Java Virtual Machine (JVM).

 ● It looks and feels like Java, but is simpler and more expressive.

 ● It can use any Java library directly.

 Drawback of Maven and Ant:

 Drawback in Maven / Ant How Gradle Overcomes It

 Maven : Uses only XML for

 configuration and is hard to

 customize.

 Ant : No standard project

 structure, everything must be

 manually defined.

 Gradle uses Groovy or Kotlin DSL , to write build

 logic like real code — more concise, easier to read,

 and fully customizable.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Maven : Build lifecycle is fixed

 and hard to modify.

 Ant : Too much flexibility — no

 conventions, which can lead to

 messy builds.

 Gradle uses "convention over configuration" but

 allows full customization when needed — best of

 both worlds.

 Maven : Limited flexibility for

 complex builds.

 Ant : Flexible but lacks

 dependency management by

 default.

 Gradle combines flexibility with powerful

 dependency management (works with Maven

 Central, Ivy, Google repos, etc.).

 Maven : Slower builds due to

 rebuilding everything.

 Ant : No incremental build

 support.

 Gradle uses incremental builds , build caching ,

 and parallel execution to make builds faster.

 Maven : Works best for Java but

 not great for other languages.

 Ant : Can work with other

 languages but requires a lot of

 manual setup.

 Gradle supports Java, Kotlin, Groovy, Scala,

 C/C++, Android, and more out of the box.

 Maven & Ant : Harder to

 manage large multi-module

 projects.

 Gradle has first-class multi-project build

 support , making it easier to scale for big projects.

 Maven & Ant : Limited or

 outdated plugin ecosystems.

 Gradle has a rich plugin system and allows

 custom plugins in Groovy, Kotlin, or Java.

 Features of Gradle:

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Flexibility:

 Gradle uses a DSL (Domain Specific Language) based on Groovy or Kotlin, which

 allows users to define custom build logic. This is more flexible compared to XML-based

 configurations like Maven’s pom.xml.

 Incremental Builds:

 Gradle supports incremental builds, meaning it can detect what parts of the build process

 need to be re-executed. This results in faster build times, as only the changed parts of the

 project are rebuilt, reducing the overall build time.

 Dependency Management:

 Gradle provides robust support for managing dependencies and repositories (like Maven

 Central, JCenter, or custom repositories). Gradle will automatically download the

 dependencies, manage their versions, and ensure compatibility.

 Multi-project Builds:

 Gradle is efficient in multi-project builds, where large projects can be split into several

 smaller sub-projects. It allows to define dependencies between these sub-projects and

 perform tasks on them in parallel to speed up builds.

 Parallel Execution:

 Gradle supports parallel execution of independent tasks. This is especially useful in large

 projects where tasks can be executed concurrently, dramatically speeding up build times.

 Android Build System:

 Gradle is the official build system for Android. Android Studio uses Gradle to handle the

 building, testing, and packaging of Android apps. It allows you to configure different

 build variants (e.g., development, production, etc.) easily.

 Build Caching:

 Gradle includes a build cache that can store task outputs and reuse them in future builds,

 even across different machines. This further speeds up builds, especially in CI/CD

 pipelines.

 Extensibility:

 Gradle can be easily extended through plugins. Plugins can be created and used to add

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 specific behaviour. Gradle has a rich ecosystem of plugins for popular tools and platforms

 like Docker, Java, Kubernetes, etc.

 INSTALLATION OF GRADLE:

 Gradle is a Java based tool. Hence the java 8 or higher version must be installed before

 installing Gradle.

 Step 1: Visit the official page for Gradle https://gradle.org/install/

 Step 2: Select the binary-only option for downloading the gradle zip file.

 Step 3: Extract the file at the desired location.

 Step 4: Configure the environment variable. Click on the path and Edit it by adding the

 path of gradle

 Step 5: Open command prompt and issue the command gradle --version. It will display

 the version of gradle

 CCS342 - DEVOPS

https://gradle.org/install/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Core Concepts:

 ● Project: Gradle project represents the application that can be deployed.

 ● Task: A task refers to the piece of work performed by a build. For Example: the task

 can be creating jar files, Compiling classes, making javaDoc, etc.

 ● Build Script: Gradle builds the build script for project and task. Every gradle build

 represents one or more projects. The build script is written using the domain-specific

 language called Groovy. This script is saved as build.gradle

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 BUILDING BASIC APPLICATION USING GRADLE

 Gradle application projects can be created by using IDE or using the command prompts.

 Using IDE

 To create a new Gradle project with the Eclipse IDE, select the File New Other… menu

 entry and select Gradle/Gradle Project.

 Click on the Next > button.

 Enter the name of the Gradle project and Click Finish

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 A new Gradle project will be created with the above mentioned directories.

 Creating Gradle using Command prompt:

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 We can create Gradle project using command prompt using the command-line by

 missing the command gradle init

 Enter the build type as 2 for application

 Enter 1 for selecting Java and Enter the default version and then the name of the project.

 Select the Build Script as Groovy and select the test Framework as 1

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Enter no to generate build using new APIs

 Thus the build directory gets created by above commands and app.jar gets generated.

 Gradle tasks:

 1. gradle tasks : - List the tasks that can be performed by gradle

 2. gradle init :- Creates a gradle project

 3. gradle javadoc :- Generates JavaDoc API documentation

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 4. gradle clean :- Deletes the build directory

 5. gradle build :- Compiles, unit test and packages the application

 6. gradle run :- It executes the main class

 Understanding Build in gradle:

 Build.gradle:

 Scripting file for build is written in build.gradle. It is similar to pom.xml file in

 Maven. The build.gradle file contains all the dependencies required to execute the

 project. It contains all configurations of the project. Gradle uses Domain Specific

 language (Groovy) for describing builds. All the tasks and plugins are defined in this file.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 When the run command is called, it executes the build.gradle file in the current

 directory. The build file consists of three default sections: plugins, repositories and

 dependencies.

 ● plugins: We can apply the java-library plugin to add support for java library

 ● Repositories: We can declare internal and external repositories for resolving

 dependencies. We can declare different types of repositories supported by Gradle,

 Maven, Ant and Ivy.

 ● Dependencies: We can declare dependencies that are necessary for the project.

 build.gradle

 plugins {

 // Apply the java-library plugin for API and implementation separation.

 ̀ java-library`

 }

 repositories {

 // Use Maven Central for resolving dependencies.

 mavenCentral()

 }

 dependencies {

 // Use JUnit Jupiter for testing.

 testImplementation(libs.junit.jupiter)

 }

 tasks.named<Test>("test") {

 // Use JUnit Platform for unit tests.

 useJUnitPlatform()

 }

 application{

 //Define the main class for the application

 }

 gradle directory:

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 This is a directory located at the root of a Gradle project. It has a sub directory wrapper.

 Wrapper consists the following important files

 ● gradle-wrapper.jar - contains code for downloading the Gradle distribution specified

 in the gradle-wrapper.properties file

 ● gradle-wrapper.properties - contains wrapper runtime properties.

 gradlew:

 It is the script that executes Gradle tasks with the Wrapper on Linux and MacOS

 machines.

 gradlew.bat:

 It is the gradlew equivalent batch script for Windows machines

 settings.gradle:

 The settings.gradle file is used to configure the global settings of the gradle project.

 The main benefit of the wrapper is that if a gradle project is being build on one machine

 we can use the gradle projects in another machine without installing gradle software.

 CCS342 - DEVOPS

