# ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY Approved by AICTE & Affliated to anna university Accredited with A<sup>+</sup> grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERING



NAME OF THE SUBJECT: ENGINEERING MECHANICS

SUBJECT CODE : ME3351

**REGULATION** 2021

# **UNIT I: BASIC & STATICS OF PARTICLES**

# Forces in space –Resultant and Equilibrium of particles in Three Dimensions [Vector approach]

# **Quantities:**

Physical Quantities are

- i) Scalar quantity
- ii) Vector quantity

# **Scalar Quantity:**

Scalar quantity are those which are completely defined by their magnitude only.

Ex. 2kg of mass

25°C of temperature

10 m/s acceleration

# **Vector Quantity**

The Quantity which are defined by their magnitude and direction is known as vector quantity.

Ex. 10 n force acting vertically downward direction

9.81 m/s<sup>2</sup>acceleration directed towards is centre of the earth.

# **Types of Vectors**

- 1. Free Vector
- 2. Fixed Vector
- 3. Sliding Vector

- 4. Unit Vector
- 5. Zero(or) Null Vector
- 6. Equal Vector
- 7. Like Vector

# 1. Free Vector:

If the vector may act at any point in space maintaining some magnitude and direction with no specific point of action is called Free vector.

#### 2. Fixed Vector:

The vector whose point of action is same is called Fixed vector.

# 3. Sliding vector:

The vector may be applied at any point along its Line of action is called sliding vector.

#### 4. Unit vector:

A vector whose magnitude is unity is called unit vector.

AB, 
$$n = \frac{\overrightarrow{AB}}{|A||\overrightarrow{B}|}$$

# 5. Zero (or) Null vector

It is defind as the vector whose magnitude is zero.

# 6. Equal vector

Those vector which are similar to each other but have same magnitude and direction in same and equal is called equal vector.

# 7. Like vector:

These vector each are slimier to each other and have same direction and unequal magnitude is called like vector.

# 8. Vector Addition:

We Law of vector addition are

A+B=B+A [commutative Law]

A+[B+C] = A+B+C [associative Law]

#### **Vector Product**

- 1. Scaler product(or) dot product
- 2. Vector product(or) cross product

# 1. Scaler product (or) dot product:



$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

When the angle b/w two vector  $A \& \vec{B}$ 

$$cos\theta = \frac{A.\vec{B}}{|A|.|\vec{B}|}$$

(i) When  $\theta = 0^{\circ}$ 

Then 
$$\vec{B} = |A||\vec{B}|$$

That is the two vector are in same direction.

(ii) when  $\theta = 90^{\circ} A \cdot \vec{B} = 0$ so the vectors are perpendicular

(iii) 
$$\vec{A} \cdot \vec{B} = |A|$$

When the projection B or A

If the angle b/w the A & B given

$$cos\theta = \frac{A.\vec{B}}{AB}$$

# 2. Vector Product (or) cross product



In forms of Rectangular component  $A=A_{xi}+A_{yi}+A_{zk}$ 

$$\mathbf{B} {=}\, B_{xi} + B_{yi} + B_{zk}$$

$$\begin{array}{cccc}
 i & j & k \\
 A \times B = |Ax & Aj & Az| \\
 Bx & By & Bz
\end{array}$$

The Angle b/w the vector is given by

$$sin\theta = \frac{|\vec{A} \times \vec{B}|}{|\vec{A}||\vec{B}|}$$

Dot product of force and displacement given workdone.

 $\therefore$  Workdone= $F_d$ 

# **Position vector:**

Position vector defines the position of points in any co-ordinate system.

Position vector 
$$\vec{r} = \vec{x} \cdot \vec{i} + \vec{y} \cdot \vec{j} + \vec{z} \cdot \vec{k}$$

Where  $\dot{\vec{v}}$ ,  $\dot{\vec{j}}$ ;  $\dot{\vec{k}}$  – are unit vector



Magnitude 
$$r = r = \sqrt{x^2 + y^2 + z^2}$$

# Formula

Resultant vector r = A + B + C

Unit vector to resultant vector  $n = \frac{1}{|\vec{R}|}$ 

$$|R| = \sqrt{x^2 + y^2 + z^2}$$

Magnitude = 
$$\sqrt{x^2 + y^2 + z^2}$$

Unit vector 
$$n = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$$

$$\vec{AB} = (x_2 - x_1)\dot{v} + (y_2 - y_1)\dot{p} + (z_2 - z_1)\dot{k}$$

$$|AB| = \sqrt{x^2 + y^2 + z^2}$$

Dot product vector  $\vec{A}$ .  $\vec{B} = [\dot{v} + \dot{p} + \vec{k}]$ .  $[\dot{v} + \dot{p} + \vec{k}]$ 

Angle b/w the vector 
$$s\theta = \frac{A.\vec{B}}{|A||\vec{B}|}$$

Cross Product vector 
$$A \times B = \begin{vmatrix} i & j & k \\ x1 & y1 & z1 \\ x2 & y2 & z2 \end{vmatrix}$$

Angle b/w the vector 
$$sin\theta = \frac{|A \times \vec{B}|}{|A||\vec{B}|}$$

# **Problems:**

1. Three vectors A, B, C are given as  $A = 3\dot{t} + 2\dot{p} + 4\vec{k}$ ,  $B = 4\dot{t} - 2\dot{p} + 6\vec{k}$ 

$$C = 2i - 3j - \vec{k}$$
, find

- 1. The resultant vector
- 2. A unit vector || er top resultant vector

# Given:

$$A = 3\dot{t} + 2\dot{t} + 4\dot{k}$$

$$B = 4\dot{v} - 2\dot{p} + 6\dot{k}$$

$$C = 2\dot{t} - 3\dot{t} - \vec{k}$$

# To find:

- 1. The resultant vector
- 2. A unit vector  $\parallel$  er top resultant vector

# **Solution:**

1. The resultant vector

$$R = A + \vec{B} + C$$

$$R = 3\dot{v} + 2\dot{p} + 4\vec{k} + 4\dot{v} - 2\vec{f} + 6\vec{k} + 2\dot{v} - 3\dot{p} - \vec{k}$$

$$R = 9\dot{v} - 3\dot{p} + 9\vec{k}$$

2. A unit vector || er top resultant vector

Unit Vector 
$$n = \frac{\vec{r}}{|\vec{R}|}$$

$$\vec{R} = 9\dot{t} - 3\dot{p} + 9\vec{k}$$

$$|R| = \sqrt{9^2 + (-3)^2 + 9^2} = \sqrt{81 + 9 + 81}$$

$$|R| = \sqrt{171}$$

$$R = 13.08$$

$$n = \frac{9\dot{v} - 3\dot{p} + 9\dot{k}}{13.08}$$

$$n = \frac{9}{13.08} \dot{b} - \frac{3}{13.08} \dot{p} + \frac{9}{13.08} \dot{k}$$

Unit vector n = 0.68i - 0.22j + 0.68k

2.If 
$$A = \dot{v} - \dot{p} - 2\vec{k}$$
,  $B = 3\dot{v} + 2\vec{p} - 2\vec{k}C = 2\dot{v} + 3\dot{p} - 4\vec{k}$ , find

2A - 2B + 3C n terms of i, j, k and its magnitude.

# Given:

$$A = \dot{v} - \dot{y} - 2\vec{k}$$

$$B = 3\dot{t} + 2\dot{t} - 2\dot{k}$$

$$C = 2\dot{v} + 3\dot{r} - 4\dot{k}$$

# To find:

$$2A - 2B + 3C = ?$$
 magnitude

# **Solution:**

$$2A - 2B + 3C = ?$$

$$2A = 2[\dot{t} - \dot{f} - 2\vec{k}]$$

$$2A = 2\dot{t} - 2\dot{r} - 4\dot{\vec{k}}$$

$$2B = 2[3\dot{t} + 2f - 2\vec{k}]$$

$$2B = 6\dot{t} + 4\dot{r} - 4\dot{k}$$

$$3C = 3[2\dot{\imath} + 3\dot{\jmath} - 4\dot{k}]$$

$$3C = 6\dot{v} + 9\dot{r} - 12\dot{k}$$

$$2A - 2B + 3C = [2\dot{v} - 2\dot{p} - 4\dot{k}] - [6\dot{v} + 4\dot{p} - 4\dot{k}] + 6\dot{v} + 9\dot{p} - 12\dot{k}$$

$$= 2\dot{t} - 2\dot{f} - 4\dot{k} - 4\dot{f} + 4\dot{k} + 9\dot{f} - 12\dot{k}$$

$$2A - 2B + 3C = 2\dot{v} + 3\dot{p} - 12\dot{k}$$

$$2A - 2B + 3C = \sqrt{2^2 + 3^2 + (-12)^2} = \sqrt{4 + 9 + 144}$$

$$|2A - 2B + 3C| = \sqrt{157} = 12.53$$
  
 $|2A - 2B + 3C| = 12.53$ 

3. Find the unit vector along the line which ordinates at point (2,3,-2) and passes through the point (1,0,5)

# **Given:**

At point 
$$(2,3,-2)=(x_1,y_1,z_1)(1,0,5)=(x_2,y_2,z_2)$$

**To find**: Unit vector 'n'=?

#### Soln:

Unit vector 
$$n = \frac{1}{|AB|}$$

$$AB = -1$$

$$A = x_1 \dot{v} + y_1 \dot{p} + z_1 \dot{k}$$

$$B = x_2 \dot{v} + y_2 \dot{p} + z_2 \dot{k}$$

$$AB = (x_2 - x_1) \dot{v} + (y_2 - y_1) \dot{p} + (z_2 - z_1) \dot{k}$$

$$AB = (1 - 2) \dot{v} + (0 - 3) \dot{p} + (5 - (-2)) \dot{k}$$

$$AB = -1 \dot{v} - 3 \dot{p} + 7 \dot{k}$$

$$|AB| = \sqrt{(-1)^2 + (-3)^2 + (7)^2}$$

$$|AB| = \sqrt{1 + 9 + 49} = \sqrt{59}$$

$$|AB| = 7.68$$

$$n = \frac{\ddot{AB}}{|\ddot{AB}|} = \frac{-1 \dot{v} - 3 \dot{p} + 7 \dot{k}}{7.68}$$

$$n = \frac{-1}{7.68} \dot{v} - \frac{3}{7.68} \dot{p} - \frac{7}{7.68} \dot{k}$$

$$ans n = -0.13 \dot{v} - 0.39 \dot{r} + 0.91 \vec{k}$$

4. Find the dot product of two vector  $A = 2\dot{v} - 6\dot{p} - 3\dot{k}$ ,  $B = 4\dot{v} + 3\dot{p} - \dot{k}$  also find the angle b/w the angle b/w them.

# **Given Data:**

$$A = 2i - 6j - 3k$$
$$b = 4i + 3j - k$$

# To find:

- 1. Dot product of Two vector
- 2. Angle b/w the vector

# Soln:

1. Dot product of two vector

$$A.B = [2i - 6j - 3k].[4i + 3j - k]$$

$$= 2 \times 4 + [-6] \times 3 + [-3] \times [-1]$$

$$= 8 - 18 + 3$$

$$A.B = -7$$

2. Angle b/w two vector

$$Cos\theta = \frac{A.B}{|A||B|}$$

$$|A| = \sqrt{(2)^2 + (-6)^2 + (-3)^2}$$

$$|A| = \sqrt{4 + 36 + 9}$$

$$|A| = 7$$

$$|\vec{B}| = \sqrt{(4)^2 + (3)^2 + (-1)^2} = 16 + 9 + 1 = \sqrt{16 + 9 + 1}$$

$$|\vec{B}| = \sqrt{26}$$

$$\cos\theta = \frac{-7}{7\sqrt{26}} = \frac{-1}{\sqrt{26}}$$

$$\theta = \cos^{-1}\left[\frac{-1}{\sqrt{26}}\right]$$

5. Find the cross product of vector  $A = 2\dot{\imath} - 6\dot{\jmath} - 3\vec{k}$ ,  $B = 4\dot{\imath} + 3\dot{\jmath} - \vec{k}$  and the angle b/w them.

# **Given:**

$$A = 2\dot{v} - 6\dot{p} - 3\dot{k}$$
$$B = 4\dot{v} + 3\dot{p} - \dot{k}$$

# To find:

- 1. Cross product of vector
- 2. Angle b/w hem two vector

# Soln:

Cross product:  $\times B$ 

$$A \times \vec{B} = \begin{vmatrix} \dot{t} & \dot{j} & \dot{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix}$$

$$= \dot{t}[(-6 \times -1) - (-3 \times 3)] - \dot{j}[(2 \times -1) - (4 \times -3)]$$

$$+ \dot{k}[(2 \times 3) - (4 \times -6)]$$

$$\dot{t}[6 + 9] - \dot{j}[-2 + 12] + \dot{k}[6 + 24]$$

$$A \times \vec{B} = 15\dot{t} - 10\dot{j} + 30\dot{k}$$

$$\sin\theta = \frac{|A \times \dot{B}|}{|A||\dot{B}|}$$

$$|A \times \vec{B}| = \sqrt{15^2 + (-10)^2 + (30)^2}$$

$$|A \times \vec{B}| = \sqrt{1225}$$

$$|A \times \vec{B}| = 35$$

$$|A| = \sqrt{2^2 + (-6)^2 + (-3)^2} = \sqrt{4 + 36 + 9}$$

$$|A| = \sqrt{49}$$

$$|A| = 7$$

$$|\vec{B}| = 4^2 + 3^2 + (-1)^2 = \sqrt{16 + 9 + 1} = \sqrt{26}$$

$$|\vec{B}| = \sqrt{26}$$

$$sin\theta = \frac{|A \times \vec{B}|}{|A||\vec{B}|} = \frac{35}{7 \times \sqrt{26}}$$

$$sin\theta = \frac{5}{\sqrt{2}6}$$

$$\theta = \sin^{-1} \frac{5}{\sqrt{26}}$$

$$\theta = 78.69'$$

Formula used for three dimension force analysis

Force vector  $F = \lambda \times F$ 

$$\lambda = \frac{\overline{OA}}{|\overline{OA}|}$$

Magnitude  $|OA| = \sqrt{(x)^2 + (y)^2 + (z)^2}$ 

$$\vec{R} = \vec{F}_{\vec{A}} + \vec{F}_{\vec{B}} + \vec{F}_{\vec{C}}$$

$$R = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$\theta = \cos^{-1}\left(\frac{Rx}{R}\right)$$

1. In the figures shown, three wire jointed at D. The Two ends A and B are on the wall and the other end C is on the ground. The wire CD is vertical. A force of 60 KN is applied at 'D' and it passes through a point E on the ground as shown in fig. Find the forces in all the three wire.



# **Given:**

$$F_{DE} = 60KN$$

# To find:

$$F_{DA} = ? F_{DB} = ? F_{DC} = ?$$

# Soln:

$$OA = 0\dot{t} + 3\dot{r} + 3\dot{R}$$

$$OB = 0\dot{t} + 3\dot{r} - 3\dot{k}$$

$$OC = 1.5\dot{v} + 0\dot{p} + 0\dot{R}$$

$$OD = 1.5\dot{t} + 2\dot{t} + 0\dot{k}$$

$$OE = 7.5\dot{t} + 0\dot{t} + 1.5\dot{k}$$

Force in the wire DA  $F_{DE}$ 

$$\overrightarrow{F}_{DA} = \lambda_{DA} \times F_{DA}$$

Position vector for  $\overrightarrow{DA} = [\overrightarrow{OA} - \overrightarrow{OD}]$ 

$$\vec{DA} = [0\dot{v} + 3\dot{p} + 3\dot{R}] - [1.5\dot{v} + 2\dot{p} + 0\dot{R}]$$

$$\widetilde{DA} = -1.5\dot{v} + \dot{p} + 3\dot{k}$$

Magnitude of DA

$$|DA| = \sqrt{(-1.5)^2 + (1)^2 + (3)^2}$$
$$= \sqrt{2.25 + 1 + 9}$$

$$|DA| = 3.5$$

$$\lambda_{DA} = \frac{\vec{DA}}{|DA|} = \frac{-1.5\dot{\theta} + y + 3\dot{k}}{3.5}$$

$$\lambda_{DA} = -0.428\dot{t} + 0.285\dot{t} + 0.857\dot{k}$$

$$\vec{F}_{D\vec{A}} = \lambda_{DA} \times F_{DA}$$

$$\vec{F}_{D\vec{A}} = -0.428iF + 0.285iF_{DA} + 0.857kF_{DA}$$

$$\vec{F}_{D\vec{A}} = -0.428 \dot{v} F + 0.285 \dot{r} F_{DA} + 0.857 \dot{k} F_{DA} - - - (1)$$

Force in the wire DB

Force from D to B coordinates

$$\overrightarrow{F_{DB}} = \lambda_{DB} \times F_{DB}$$

$$\lambda_{DB} = \frac{\vec{DB}}{|DB|}$$

$$\vec{DB} = [\vec{OB} - \vec{OD}]$$

$$= [0\dot{v} + 3\dot{p} - 3\vec{k}] - [1.5\dot{v} + 2\dot{p} + 0\vec{k}]$$

$$\vec{DB} = -1.5\dot{v} + \dot{p} - 3\vec{k}$$

$$|\vec{DB}| = \sqrt{(1.5)^2 + (1)^2 + (-3)^2}$$

$$|\vec{DB}| = 3.5$$

$$\lambda_{DB} = \frac{DB}{|DB|} = \frac{-1.5\dot{v} + \dot{p} - 3\dot{k}}{3.5}$$

$$\lambda = 0.428\dot{t} + 0.285\dot{t} - 0.857\dot{k}$$

$$\vec{F}_{DB} = \lambda_{DB} \times F_{DB}$$

$$F = -0.428F_{DB}\dot{v} + 0.285F_{DB}\dot{y} - 0.857F_{DB}\dot{R}$$
-----(2) Force

in the wire DC

Force from D to C coordinate

$$\overrightarrow{F}_{D\overrightarrow{C}} = \lambda_{DC} \cdot F_{DC}$$

$$\lambda_{DB} = \frac{\overline{DC}}{|\overline{DC}|}$$

$$\overrightarrow{DC} = [\overrightarrow{OC} - \overrightarrow{OD}]$$

$$= [1.5\dot{v} + 0\dot{p} - 0\vec{k}] - [1.5\dot{v} + 2\dot{p} + 0\vec{k}]$$

$$\ddot{\vec{D}}\vec{C} = 0\dot{t} - 2\dot{p} + 0\dot{\vec{k}}$$

$$|\overrightarrow{DC}| = \sqrt{(0)^2 + (-2)^2 + (0)^2} = \sqrt{4}$$

$$|\overrightarrow{DC}| = 2$$

$$\lambda_{DC} = \frac{\overline{DB}}{|\overline{DB}|} = \frac{oi-2y+0k}{2}$$

$$\lambda_{DC} = ""j$$

$$\overrightarrow{F_{DC}} = \lambda_{DC} \times F_{DC}$$

$$\overrightarrow{F_{DC}} = -F_{DC} \dot{j} - \dots (3)$$

Force in the wire DE

Force from D to E

$$\overrightarrow{F}_{DE} = \lambda_{DE} \cdot F_{DE}$$

$$\lambda_{DE} = \frac{\overrightarrow{DE}}{|\overrightarrow{DE}|}$$

$$\overrightarrow{DE} = [\overrightarrow{OE} - \overrightarrow{OD}]$$

$$= [7.5\dot{t} + 0\dot{t} - 1.5\dot{k}] - [1.5\dot{t} + 2\dot{t} + 0\dot{k}]$$

$$\widetilde{DE} = 6\dot{t} - 2\dot{t} + 1.5\dot{R}$$

$$|\widetilde{DE}| = \sqrt{(6)^2 + (-2)^2 + (1.5)^2} = \sqrt{36 + 4 + 2.25}$$

$$|\overrightarrow{DE}| = 6.5$$

$$\lambda = 0.923\dot{v} + 0.307\dot{p} + 0.23\dot{k}$$

$$\overrightarrow{F_{DE}} = \lambda_{DE} \times F_{DE}$$

$$F = -0.923\dot{v} \times F_{DE} - 0.307\dot{p} \times F_{DE} + 0.23\dot{k} \times F_{DE}$$

$$F = -0.923F_{DE}\dot{v} - 0.307F_{DE}\dot{p} + 0.23F_{DE}\dot{k}$$

$$F_{DE} = 60KN$$

$$F = -0.923 \times 60 \dot{v} - 0.307 \times 60 \dot{r} + 0.23 \times 60 \dot{R}$$

$$\vec{F}_{D\vec{E}} = 55.38 \dot{v} - 18.42 \dot{p} + 13.84 \dot{R} - \dots (4)$$

$$F = -0.428 \dot{r}F_{DA} + 0.285 \dot{r}F_{DA} + 0.857 \dot{k}F_{DA}$$

$$F = -0.428F_{DB}\dot{v} + 0.285F_{DB}\dot{r} - 0.857F_{DB}\dot{k}$$

$$F_{DC} = -F_{DC}\dot{P}$$

$$F = 55.38\dot{v} - 18.42\dot{p} + 13.84\dot{k}$$

Applying equilibrium condition

 $F_{DA} = 56.62 \, KN$ 

$$(5) \Rightarrow F_{DA} + F_{DB} = 129.39$$
  
 $56.62 + F_{DB} = 129.39 \Rightarrow F_{DB} = 129.39 - 56.62$   
 $F_{DB} = 72.76 \text{ KN}$ 

$$(6) \Rightarrow -0.285 \times F_{DA} + 0.285F_{DB} - F_{DC} = 18.42$$

$$-0.285 \times 56.62 - 0.285 \times 72.76 - F_{DC} = 18.42$$

$$16.138 + 20.71 - F_{DA} = 18.42$$

$$F_{DA} = 16.138 + 20.71 - 18.42$$

$$F_{DA} = 18.428 N$$

1. Fig shows three cables AB, AC,& AD that are used to support the end of a sign which exerts a force of  $F = (250\dot{r} + 450\dot{r} - 150\dot{k})N$  at A. Determine the force develop in each cable.



# **Given:**

$$F = (250\dot{v} + 450\dot{p} - 150\dot{k})$$
 at A

To find:

Force in AB, AC & AD

Soln:

$$A = (3,0,3)$$

$$B = (6,0,0)$$
  
 $C = (0,5,0)$   
 $D = (0,0,3)$ 

$$OA = 3i + 0j + 3\vec{k}$$

$$OB = 6\dot{t} + 0\dot{t} + 3\dot{k}$$

$$OC = 0\dot{t} + 5\dot{p} + 0\dot{k}$$

$$OD = 0\dot{t} + 0\dot{p} + 3\dot{k}$$

Force of AB

$$F_{AB} = \lambda_{AB} \times F_{AB}$$
$$\lambda_{AB} = \frac{AB}{|AB|}$$

Position vector for AB

$$AB = OB - OA = [6\dot{v} + 0\dot{p} + 0\dot{k}] - [3\dot{v} + 0\dot{p} + 3\dot{k}]$$

$$|\vec{AB}| = 3\dot{v} + 0\dot{p} - 3\dot{k}$$

$$|\vec{AB}| = \sqrt{3^2 + 0^2 + [-3]^2} = \sqrt{9 + 0 + 9}$$

$$|\vec{AB}| = \sqrt{18}$$

$$|\vec{AB}| = 4.2$$

$$\lambda_{AB} = \frac{3\dot{v} + 0\dot{y} - 3\dot{k}}{4.2}$$

$$\lambda_{AB} = 0.714\dot{v} + 0\dot{p} - 0.714\dot{k}$$

$$\vec{F}_{AB} = \lambda_{AB} \times F_{AB}$$

$$\vec{F}_{AB} = 0.714F_{AB}\dot{v} + 0\dot{p} - 0.714F_{AB}\dot{k} - \dots (1)$$

Force on AC

$$\vec{F}_{AC} = \lambda_{AC} \times F_{AC}$$

$$\lambda_{AC} = \frac{\ddot{AC}}{\ddot{|AC|}}$$

Position vector of AC = OC - OA

$$[0\dot{t} + 5\dot{p} + 0\dot{k}] - [3\dot{t} + 0\dot{p} + 3\dot{k}]$$

$$AC = -3\dot{t} + 5\dot{p} - 3\dot{k}$$

$$|\ddot{A}C| = \sqrt{(-3)^2 + (5)^2 + (-3)^2} = \sqrt{9 + 25 + 9} = \sqrt{43}$$

$$|\ddot{A}C| = 6.5$$

$$\lambda_{AC} = \frac{\vec{AC}}{|\vec{AC}|} = \frac{-3\dot{\imath} + 5\dot{\jmath} - 3\dot{k}}{6.5}$$

$$\lambda = -0.461\dot{t} + 0.769\dot{t} - 0.461\dot{k}$$

$$\overrightarrow{F_{AC}} = \lambda_{AC} \times F_{AC}$$

$$\vec{F}_{AC}^{""} = -0.461 F_{AC} \dot{v} + 0.769 F_{AC} \dot{v} - 0.461 F_{AC} \dot{k}^{"} - \cdots (2)$$

Force on AD

$$\overrightarrow{AD} = \overrightarrow{OA} - \overrightarrow{OA} = [0\dot{v} + 0\dot{p} + 3\dot{k}] - [3\dot{v} + 0\dot{p} + 3\dot{k}]$$

$$\overrightarrow{AD} = -3\dot{v} + 0\dot{p} + 0\dot{k}$$

Magnitude of AD

$$|\overrightarrow{AD}| = \sqrt{(-3)^2} = \sqrt{9}$$
$$|\overrightarrow{AD}| = 3$$

$$\lambda_{AD} = \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|} = \frac{-3\dot{v} + 0\dot{r} + 0\dot{R}}{3}$$

$$\lambda_{AD} = \vec{+}$$

$$\vec{F}_{AD}^{\overrightarrow{n}} = -F_{AD} \dot{v} - \dots (3)$$

$$F = 250\dot{t} + 450\dot{t} - 150\dot{k}$$
 [is given]

Applying the equilibrium Eqn

$$\sum F_x = 0$$

$$0.714F_{AB} - 0.461F_{AC} - F_{AD} + 250 = 0$$

$$0.714F_{AB} - 0.461F_{AC} - F_{AD} = -250 - (4)$$

$$\sum F_y = 0$$

$$0F_{AB} + 0.769F_{AC} + 450 = 0$$
-----(5)

$$0.769F_{AC} = -450$$

$$F_{AC} = \frac{-450}{0.769}$$

$$F_{AC} = -585.17 N$$

$$\sum F_z = 0$$

$$-0.714F_{AB} - 0.461F_{AC} - 150 = 0 - - - - - (6)$$

$$-0.714F_{AB} - 0.461 \times (-585.17) - 150 = 0$$

$$-0.714F_{AB} + 269.76 - 150 = 0$$

$$-0.714F_{AB} + 119.76 = 0$$

$$F_{AB} = \frac{-119.76}{-0.714}$$

$$F_{AB} = 167.73N$$

$$(4) \Rightarrow 0.714F_{AB} - 0.461F_{AC} - F_{AD} = -250$$

$$0.714 \times 167.73 - 0.461 \times -585.17 - F_{AD} = -250$$
  
 $119.76 + 269.76 - F_{AD} = -250$   
 $389.52 - F_{AD} = -250$   
 $-F_{AD} = -250 - 389.52$   
 $-F_{AD} = -639.52F_{AD} = 639.52 N$ 

2. Two force act upon the tripod at point P as shown in fig. The force 8 KN is parallel to X axis & the force 16 KN is parallel to Y axis. Determine the force acting at the legs of tripod if the rest on legs on ground at A, B, &C whose coordinates with respect to O are given the height of the P above the origin is 10m.



#### Given:

8 KN at point 'P' in horizontal 16 KN at point 'P' in vertical Height of point P=10m from 0

#### **To Find:**

$$F_{PA}$$
,  $F_{PB}$ ,  $F_{PC}$ 

#### Soln:

Coordinates

$$A = (-4,0,0), B = (5,0,2), C = (-2,0,-3), P(0,10,0)$$

$$OA = -4\dot{v} + 0\dot{p} + 0\dot{k}, OB = 5\dot{v} + 0\dot{p} + 2\dot{k}, OC = -2\dot{v} + 0\dot{p} - 3\dot{k}$$

$$OP = 0\dot{t} + 10\dot{t} + 0\vec{k}$$

Force on  $F_{PA}$ 

$$|\vec{P}_{P\vec{A}}| = \lambda_{PA} \times F_{PA} \lambda_{PA} = \frac{A}{|\vec{P}\vec{A}|}$$

$$|\vec{P}\vec{A}| = \vec{O}\vec{A} - \vec{O}\vec{P}$$

$$= -4\dot{v} - [10\dot{p}]$$

$$|\vec{P}\vec{A}| = -4\dot{v} - 10\dot{p}$$

$$|\vec{P}\vec{A}| = \sqrt{(-4)^2 + (-10)^2} = \sqrt{16 + 100} = \sqrt{116}$$

$$|\vec{P}\vec{A}| = 10.77$$

$$\lambda_{PA} = \frac{\vec{P}\vec{A}}{|\vec{P}\vec{A}|} = \frac{-4\dot{v} - 10\dot{y}}{10.77}$$

$$\lambda_{PA} = -0.371\dot{v} - 0.928\dot{p}$$

$$|\vec{F}_{P\vec{A}}| = \lambda_{PA} \times F = -0.371\dot{v} \times F_{PA} - 0.928\dot{p} \times F_{PA}$$

$$|\vec{F}_{P\vec{A}}| = -0.371F_{PA}\dot{v} - 0.928F_{PA}\dot{p} - \cdots (1)$$

Force of PB

$$\vec{F}_{PB}^{"\rightarrow} = \lambda_{PB} \times F_{PB} \lambda_{PB} = \frac{\vec{PB}}{|\vec{PB}|}$$

$$\vec{PB} = \vec{OB} - \vec{OP}$$

$$= [5\dot{v} + 2\dot{k}] - [10\dot{p}]$$

$$\vec{PB} = 5\dot{v} - 10\dot{p} + 2\dot{k}$$

$$|\vec{PB}| = 11.35$$

$$\lambda_{PB} = \frac{\vec{PB}}{|\vec{PB}|} = \frac{5\dot{v} - 10\dot{y} + 2\dot{k}}{11.35}$$

$$\lambda_{PB} = 0.44\dot{v} - 0.88\dot{p} + 0.176\dot{k}$$

$$\vec{F}_{PB}^{"\rightarrow} = \lambda_{PB} \times F_{PB}$$

$$\vec{F}_{PB}^{"""} = 0.44 F_{PB} \dot{v} - 0.88 F_{PB} \dot{r} + 0.176 F_{PB} \dot{k} - \dots$$
 (2)

Force on PC

$$\vec{F}_{P\vec{C}} = \lambda_{PC} \times F_{RC} \ \lambda_{PC} = \frac{\vec{F}\vec{C}}{|\vec{F}\vec{C}|}$$

$$\vec{P}\vec{C} = \vec{O}\vec{C} - \vec{O}\vec{P}$$

$$= [2\dot{v} - 3\dot{k}] - 10\dot{p}$$

$$\vec{P}\vec{C} = -2\dot{v} - 10\dot{p} - 3\dot{k}$$

$$|\vec{P}\vec{C}| = \sqrt{(-2)^2 + (-10)^2 + (-3)^2} = \sqrt{4 + 100 + 9} = \sqrt{113}$$

$$|\vec{P}\vec{C}| = 10.63$$

$$\lambda_{PC} = \frac{\vec{F}\vec{C}}{|\vec{P}\vec{C}|} = \frac{-2\dot{v} - 10\dot{y} - 3\dot{k}}{10.63}$$

$$\lambda = -0.188\dot{v} - 0.94\dot{p} - 0.282\dot{k}$$

$$\vec{F}_{P\vec{C}} = \lambda_{PC} \times F_{PC}$$

$$\vec{F}_{P\vec{C}} = -0.188F_{PC}\dot{v} - 0.94F_{PC}\dot{p} - 0.282\dot{k}$$

$$P = 0\dot{v} + 10\dot{p} + 0\dot{k} - - - - - - (4)$$

Apply Equilibrium condition

$$\sum F_x = 0$$

$$-0.371F_{PA} + 0.44F_{PB} - 0.188F_{PC} = 0 - (5)$$

$$\sum F_y = 0$$

$$-0.928F_{PA} - 0.88F_{PB} - 0.94F_{PC} + 10 = 0$$

$$-0.928F_{PA} - 0.88F_{PB} - 0.94F_{PC} = -10$$

$$0.928F_{PA} - 0.88F_{PB} - 0.94F_{PC} = 10 - (6)$$

$$\sum F_Z = 0$$

$$-0.282F_{PC} + 0.178F_{PB} = 0$$

$$0.178F_{PB} - 0.282F_{PC} = 0$$
-----(7)

Solve Eqn(5)&(6)

$$(5) \times 0.928 - 0.344 F_{PA} + 0.4 F_{PB} - 0.174 F_{PC} = 0$$

(6) 
$$\times$$
 0.371 0.344 $F_{PA}$  + 0.326 $F_{PB}$  + 0.348 $F_{PC}$  = 3.71

$$0.726F_{PR} - 0.174F_{PC} = 3.71$$
-----(8)

Solve Eqn (7) &(8)

$$(7) \Rightarrow 0.726 \Rightarrow 0.127 F_{PR} - 0.2 F_{PC} = 0$$

(8)
$$\Rightarrow$$
0.176 $\Rightarrow$  0.127 $F_{PB}$  + 0.03 $F_{PC}$  = 0.652

$$-0.23F_{PC} = -0.652$$

$$F_{PC} = \frac{-0.652}{-0.23}$$

Eqn(7) becomes 
$$0.176F_{PB}$$
- $0.282F_{PC} = 0$ 

$$0.176 \times F_{PB} - 0.282 \times 2.834 = 0$$

$$F_{PB} = \frac{0.282 \times 2.834}{0.176}$$

$$F_{PB} = 4.539N$$

Eqn (5) becomes

$$-0.371F_{PA} + 0.44F_{PB} - 0.188F_{PC} = 0$$

$$-0.371F_{PA} + 0.44 \times 4.539 - 0.188 \times 2.834 = 0$$

$$-0.371 \times F_{PA} + 1.997 - 0.532 = 0$$

$$-0.371 \times F_{PA} + 1.465 = 0$$

$$F_{PA} = \frac{-1.465}{-0.371}$$

$$F_{PA} = 3.94N$$