
BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Page 11 of 138

o Combination of Different Processing Units:
Hybrid processors combine elements of different processor types, such as CPUs,
GPUs, DSPs, and FPGAs, on a single chip or in a closely integrated system.
This allows for versatile processing capabilities, optimized for a wide range of
tasks, from general computing to specialized signal processing.
Examples: Heterogeneous computing platforms like Nvidia's Jetson, AMD's
Accelerated Processing Units (APUs).

o Use in Complex Embedded Systems:
Hybrid processors are increasingly used in automotive systems, robotics, and
advanced IoT devices where multiple processing requirements coexist.
They offer the flexibility and performance needed to handle diverse tasks such as
sensor fusion, AI processing, and real-time control.

1.5. Embedded System Design Process

Requirements and Specifications:
o Capturing Requirements:

The first step in the design process involves understanding and documenting the
requirements of the system. This includes functional requirements (what the
system should do) and non-functional requirements (performance, reliability,
power consumption).
Tools like use cases, user stories, and requirement specifications documents are
often used to capture these requirements.

o Defining Specifications:
Specifications translate requirements into detailed descriptions of the system's
hardware and software components.
Specifications include performance metrics, interface descriptions, safety
standards, and environmental conditions under which the system must operate.

Design and Architecture:
o Hardware Architecture:

Involves selecting the appropriate processor, memory, and peripherals to meet

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Page 12 of 138

microcontroller, memory size, communication interfaces, and power
management circuits.
The architecture must balance performance, cost, and power consumption, often
requiring trade-offs.

o Software Architecture:
Involves designing the software components, including the operating system (if
required), device drivers, middleware, and application software.
The architecture must ensure modularity, scalability, and maintainability, with
careful consideration of real-time constraints.

o System Partitioning:
The system's functionality is divided between hardware and software, with
decisions on what should be implemented in firmware, what in software, and
what in dedicated hardware (like FPGAs or ASICs).
Effective partitioning can optimize performance and reduce power consumption.

Implementation:
o Hardware Implementation:

The hardware design is realized through schematic capture and PCB layout,
followed by the fabrication of the printed circuit board (PCB).
Components are selected and placed, with careful consideration of signal
integrity, thermal management, and power distribution.

o Software Implementation:
Software is developed using embedded programming languages (such as C,
C++, or assembly) and tools like integrated development environments (IDEs).
The code is written, compiled, and loaded onto the hardware, with testing
performed on simulators or development boards before integration.

Testing and Validation:
o Unit Testing:

Individual components (both hardware and software) are tested to ensure they
meet their specifications and function correctly.
Techniques include functional testing, performance testing, and stress testing.

o Integration Testing:
The system is assembled, and the interaction between different components is
tested to ensure they work together as intended.
Testing scenarios often include system-level functionality, real-time performance,
and communication between modules.

o Validation and Verification:

its intended environment.
Verification confirms that the system meets its specifications and requirements,
often involving formal methods or simulations to prove correctness.

Optimization:
o Performance Optimization:

-tuned by optimizing code, improving hardware
efficiency, and reducing latency.
Techniques include code profiling, loop unrolling, memory management
improvements, and hardware accelerations (using DSPs or FPGAs).

o Power Optimization:
Power consumption is minimized by using low-power components, optimizing
software for energy efficiency, and implementing power-saving modes (like sleep
modes).

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Page 13 of 138

Techniques include dynamic voltage and frequency scaling (DVFS), optimizing
power management algorithms, and reducing unnecessary processing.

Deployment and Maintenance:
o Deployment:

The final system is deployed into its target environment, with installation
procedures ensuring proper setup and operation.
This may include field testing, user training, and the establishment of
maintenance procedures.

o Maintenance and Updates:

issues, and applying updates (both hardware and software).
Firmware updates are particularly important for fixing bugs, improving
performance, and addressing security vulnerabilities.

1.6. Hardware Architecture

Processor Core:
o Central Processing Unit (CPU):

The heart of the embedded system, responsible for executing instructions and
performing calculations.
Modern embedded systems typically use ARM Cortex, MIPS, or RISC-V
architectures, which offer a balance of performance, power efficiency, and cost.
Multicore processors are increasingly common, providing parallel processing
capabilities to handle complex tasks simultaneously.

o Digital Signal Processing (DSP) Units:
Specialized units within the processor for handling mathematical operations
related to signal processing, such as filtering, FFTs, and modulation.
DSPs are crucial in applications like audio processing, telecommunications, and
real-time data analysis.

Memory Subsystem:
o RAM (Random Access Memory):

Provides volatile storage for the system's running applications and temporary
data.

and large datasets.
Types of RAM include SRAM (static RAM), which is fast and power-efficient but
expensive, and DRAM (dynamic RAM), which is cheaper and denser but requires
refresh cycles.

o ROM (Read-Only Memory):
Stores firmware or low-level software that needs to be preserved across power
cycles.
Common types include PROM, EPROM, and Flash memory, with Flash being the
most popular due to its reprogrammability and durability.

o Cache Memory:
A small, high-speed memory located close to the CPU to reduce access time for
frequently used data.
The presence of multiple cache levels (L1, L2, L3) improves overall system
performance by minimizing the time spent accessing slower main memory.

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Page 14 of 138

Input/Output (I/O) Subsystem:
o General-Purpose I/O (GPIO) Pins:

Allow the processor to interact with external devices and peripherals, such as
sensors, actuators, and user interfaces.
GPIO pins can be configured as input or output, enabling communication with
digital signals.

o Peripheral Interfaces:
Serial Communication Interfaces:

UART, SPI, and I2C are common protocols for communicating with
peripherals like sensors, displays, and other microcontrollers.
UART (Universal Asynchronous Receiver/Transmitter) is used for simple
serial communication, while SPI (Serial Peripheral Interface) and I2C
(Inter-Integrated Circuit) are used for higher-speed communication with
multiple devices.

Parallel Communication Interfaces:
Used for high-speed data transfer, typically in memory interfaces or
between processors.
Examples include PCIe (Peripheral Component Interconnect Express)
and memory buses for interfacing with RAM or external memory devices.

Power Supply Unit (PSU):
o Voltage Regulation:

Converts and regulates the power supply from a source (e.g., battery, mains) to
the required voltages for different components in the embedded system.
Switching regulators and linear regulators are commonly used, with the choice
depending on the power efficiency and noise requirements of the application.

o Power Management:
Embedded systems often include power management circuits to optimize power
consumption, especially in battery-operated devices.
Techniques include dynamic voltage and frequency scaling (DVFS), power
gating, and low-power modes (sleep, deep sleep).

Clocks and Timing:
o System Clock:

Provides the timing reference for the processor and other digital components,
ensuring synchronous operation.
Crystal oscillators are commonly used to generate accurate clock signals, with
phase-locked loops (PLLs) for adjusting frequency as needed.

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Page 15 of 138

o Timers and Counters:
Timers are used for tasks requiring precise time intervals, such as generating
time delays, measuring time intervals, or triggering events.
Watchdog timers monitor the system for malfunctions and can reset the
processor if it becomes unresponsive, enhancing system reliability.

1.7. Software Architecture

Operating Systems (OS):
o Real-Time Operating Systems (RTOS):

RTOSes are designed for embedded systems that require deterministic behavior
and quick response to external events.
Features include task scheduling, inter-task communication, and synchronization,
with support for priority-based preemption.
Examples: FreeRTOS, VxWorks, and QNX.

o Embedded Linux:
A lightweight version of the Linux OS tailored for embedded systems, offering
rich features, extensive driver support, and a large development community.
Embedded Linux is often used in more complex embedded systems, such as
routers, smart TVs, and industrial controllers.

o Bare Metal Programming:
In simpler or highly resource-constrained systems, software runs directly on the
hardware without an OS, known as bare-metal programming.
This approach offers minimal overhead and maximum control over the hardware,
but requires careful management of resources and scheduling.

Middleware:
o Hardware Abstraction Layer (HAL):

Provides a uniform interface to the hardware, abstracting the details of the
underlying architecture and allowing software to interact with hardware devices
without needing to know their specific implementation.
HAL is essential for portability, as it enables software to run on different hardware
platforms with minimal changes.

o Communication Protocols:
Middleware often includes support for communication protocols, such as TCP/IP
for networking, USB for device communication, and CAN bus for automotive
applications.
These protocols enable seamless data exchange between the embedded system
and external devices or networks.

Application Software:
o Task Management:

Embedded systems often perform multiple tasks concurrently, requiring efficient
task management to ensure timely execution.
Techniques include task prioritization, scheduling algorithms (e.g., round-robin,
rate-monotonic), and inter-task communication mechanisms like message
queues and semaphores.

o User Interface (UI):
The UI in embedded systems ranges from simple LED indicators and buttons to
complex graphical user interfaces (GUIs) on touchscreens.
UI design in embedded systems prioritizes ease of use, responsiveness, and
minimal resource consumption.

RCET


