
Machine Learning Model Evaluation

Machine Learning Model does not require hard-coded algorithms. We feed a
large amount of data to the model and the model tries to figure out the features
on its own to make future predictions. So we must also use some techniques
to determine the predictive power of the model.

Machine Learning Model Evaluation
Model evaluation is the process that uses some metrics which help us to
analyze the performance of the model. As we all know that model development
is a multi-step process and a check should be kept on how well the model
generalizes future predictions. Therefore evaluating a model plays a vital role
so that we can judge the performance of our model. The evaluation also helps
to analyze a model’s key weaknesses. There are many metrics like Accuracy,
Precision, Recall, F1 score, Area under Curve, Confusion Matrix, and Mean
Square Error. Cross Validation is one technique that is followed during the
training phase and it is a model evaluation technique as well.

Cross Validation and Holdout

Cross Validation is a method in which we do not use the whole dataset for
training. In this technique, some part of the dataset is reserved for testing the
model. There are many types of Cross-Validation out of which K Fold Cross
Validation is mostly used. In K Fold Cross Validation the original dataset is
divided into k subsets. The subsets are known as folds. This is repeated k
times where 1 fold is used for testing purposes. Rest k-1 folds are used for
training the model. So each data point acts as a test subject for the model as
well as acts as the training subject. It is seen that this technique generalizes
the model well and reduces the error rate

Holdout is the simplest approach. It is used in neural networks as well as in
many classifiers. In this technique, the dataset is divided into train and test
datasets. The dataset is usually divided into ratios like 70:30 or 80:20.
Normally a large percentage of data is used for training the model and a small
portion of the dataset is used for testing the model.

Evaluation Metrics for Classification Task
In this Python code, we have imported the iris dataset which has features like
the length and width of sepals and petals. The target values are Iris setosa,
Iris virginica, and Iris versicolor. After importing the dataset we divided the
dataset into train and test datasets in the ratio 80:20. Then we called Decision
Trees and trained our model. After that, we performed the prediction and
calculated the accuracy score, precision, recall, and f1 score. We also plotted
the confusion matrix.

https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://www.geeksforgeeks.org/precision-recall-curve-ml/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/

Importing Libraries and Dataset

Python libraries make it very easy for us to handle the data and perform
typical and complex tasks with a single line of code.
 Pandas – This library helps to load the data frame in a 2D array format and

has multiple functions to perform analysis tasks in one go.
 Numpy – Numpy arrays are very fast and can perform large computations

in a very short time.
 Matplotlib/Seaborn – This library is used to draw visualizations.
 Sklearn – This module contains multiple libraries having pre-implemented

functions to perform tasks from data preprocessing to model development
and evaluation.

 Python3

import pandas as pd

import numpy as np

from sklearn import tree

from sklearn import datasets

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import precision_score,\

recall_score, f1_score, accuracy_score

Now let’s load the toy dataset iris flowers from the sklearn.datasets library and
then split it into training and testing parts (for model evaluation) in the 80:20
ratio.

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://www.geeksforgeeks.org/python-numpy/
https://www.geeksforgeeks.org/matplotlib-tutorial/
https://www.geeksforgeeks.org/introduction-to-seaborn-python/

 Python3

iris = load_iris()

X = iris.data

y = iris.target

Holdout method.Dividing the data into train and test

X_train, X_test,\

 y_train, y_test = train_test_split(X, y,

 random_state=20,

 test_size=0.20)

Now, let’s train a Decision Tree Classifier model on the training data, and then
we will move on to the evaluation part of the model using different metrics.

 Python3

tree = DecisionTreeClassifier()

tree.fit(X_train, y_train)

y_pred = tree.predict(X_test)

Accuracy
Accuracy is defined as the ratio of the number of correct predictions to the
total number of predictions. This is the most fundamental metric used to
evaluate the model. The formula is given by

Accuracy = (TP+TN)/(TP+TN+FP+FN)

However, Accuracy has a drawback. It cannot perform well on an imbalanced
dataset. Suppose a model classifies that the majority of the data belongs to
the major class label. It yields higher accuracy. But in general, the model
cannot classify on minor class labels and has poor performance.

 Python3

print("Accuracy:", accuracy_score(y_test,

 y_pred))

Output:
Accuracy: 0.9333333333333333

Precision and Recall
Precision is the ratio of true positives to the summation of true positives and
false positives. It basically analyses the positive predictions.

Precision = TP/(TP+FP)

The drawback of Precision is that it does not consider the True Negatives and
False Negatives.

Recall is the ratio of true positives to the summation of true positives and false
negatives. It basically analyses the number of correct positive samples.

Recall = TP/(TP+FN)

The drawback of Recall is that often it leads to a higher false positive rate.

 Python3

print("Precision:", precision_score(y_test,

 y_pred,

 average="weighted"))

print('Recall:', recall_score(y_test,

 y_pred,

 average="weighted"))

Output:
Precision: 0.9435897435897436

Recall: 0.9333333333333333

F1 score
The F1 score is the harmonic mean of precision and recall. It is seen that
during the precision-recall trade-off if we increase the precision, recall
decreases and vice versa. The goal of the F1 score is to combine precision
and recall.

F1 score = (2×Precision×Recall)/(Precision+Recall)

 Python3

calculating f1 score

print('F1 score:', f1_score(y_test, y_pred,

 average="weighted"))

Output:
F1 score: 0.9327777777777778

Confusion Matrix
A confusion matrix is an N x N matrix where N is the number of target classes.
It represents the number of actual outputs and the predicted outputs. Some
terminologies in the matrix are as follows:

 True Positives: It is also known as TP. It is the output in which the actual
and the predicted values are YES.

 True Negatives: It is also known as TN. It is the output in which the actual
and the predicted values are NO.

 False Positives: It is also known as FP. It is the output in which the actual
value is NO but the predicted value is YES.

 False Negatives: It is also known as FN. It is the output in which the actual
value is YES but the predicted value is NO.

 Python3

confusion_matrix = metrics.confusion_matrix(y_test,

 y_pred)

cm_display = metrics.ConfusionMatrixDisplay(

 confusion_matrix=confusion_matrix,

 display_labels=[0, 1, 2])

cm_display.plot()

plt.show()

Output:

Confusion matrix for the output of the model

In the output, the accuracy of the model is 93.33%. Precision is approximately
0.944 and Recall is 0.933. F1 score is approximately 0.933. Finally, the
confusion matrix is plotted. Here class labels denote the target classes:

0 = Setosa

1 = Versicolor

2 = Virginica

From the confusion matrix, we see that 8 setosa classes were correctly
predicted. 11 Versicolor test cases were also correctly predicted by the model
and 2 virginica test cases were misclassified. In contrast, the rest 9 were
correctly predicted.

AUC-ROC Curve
AUC (Area Under Curve) is an evaluation metric that is used to analyze the
classification model at different threshold values. The Receiver Operating
Characteristic(ROC) curve is a probabilistic curve used to highlight the
model’s performance. The curve has two parameters:
 TPR: It stands for True positive rate. It basically follows the formula of

Recall.
 FPR: It stands for False Positive rate. It is defined as the ratio of False

positives to the summation of false positives and True negatives.
This curve is useful as it helps us to determine the model’s capacity to
distinguish between different classes. Let us illustrate this with the help of a
simple Python example

 Python3

import numpy as np

from sklearn .metrics import roc_auc_score

y_true = [1, 0, 0, 1]

y_pred = [1, 0, 0.9, 0.2]

auc = np.round(roc_auc_score(y_true,

https://www.geeksforgeeks.org/receiver-operating-characteristic-roc-with-cross-validation-in-scikit-learn/
https://www.geeksforgeeks.org/receiver-operating-characteristic-roc-with-cross-validation-in-scikit-learn/

 y_pred), 3)

print("Auc", (auc))

Output:
Auc 0.75

AUC score is a useful metric to evaluate the model. It basically highlights a
model’s capacity to separate the classes. In the above code, 0.75 is a good
AUC score. A model is considered good if the AUC score is greater than 0.5
and approaches 1. A poor model has an AUC score of 0.

Evaluation Metrics for Regression Task
Regression is used to determine continuous values. It is mostly used to find a
relation between a dependent and an independent variable. For classification,
we use a confusion matrix, accuracy, f1 score, etc. But for regression analysis,
since we are predicting a numerical value it may differ from the actual
output. So we consider the error calculation as it helps to summarize how
close the prediction is to the actual value. There are many metrics available
for evaluating the regression model.

In this Python Code, we have implemented a simple regression model using
the Mumbai weather CSV file. This file comprises Day, Hour, Temperature,
Relative Humidity, Wind Speed, and Wind Direction. The link for the dataset
is here.
 We are basically interested in finding a relationship between Temperature
and Relative Humidity. Here Relative Humidity is the dependent variable and
Temperature is the independent variable. We performed the Linear
Regression and used the metrics to evaluate the performance of our model.
To calculate the metrics we make extensive use of sklearn library.

 Python3

importing the libraries

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_absolute_error,\

https://drive.google.com/file/d/1aceVEI78wW-cde7CPwE-XkIvh4Wl0MF7/view?usp=share_link

 mean_squared_error, mean_absolute_percentage_error

Now let’s load the data into the panda’s data frame and then split it into training
and testing parts (for model evaluation) in the 80:20 ratio.

 Python3

df = pd.read_csv('weather.csv')

X = df.iloc[:, 2].values

Y = df.iloc[:, 3].values

X_train, X_test,\

 Y_train, Y_test = train_test_split(X, Y,

 test_size=0.20,

 random_state=0)

Now, let’s train a simple linear regression model. On the training data and we
will move to the evaluation part of the model using different metrics.

 Python3

X_train = X_train.reshape(-1, 1)

X_test = X_test.reshape(-1, 1)

regression = LinearRegression()

regression.fit(X_train, Y_train)

Y_pred = regression.predict(X_test)

Mean Absolute Error(MAE)
This is the simplest metric used to analyze the loss over the whole dataset. As
we all know the error is basically the difference between the predicted and
actual values. Therefore MAE is defined as the average of the errors
calculated. Here we calculate the modulus of the error, perform the summation
and then divide the result by the number of data points. It is a positive quantity
and is not concerned about the direction. The formula of MAE is given by
MAE = ∑|ypred-yactual| / N

 Python3

mae = mean_absolute_error(y_true=Y_test,

 y_pred=Y_pred)

print("Mean Absolute Error", mae)

Output:
Mean Absolute Error 1.7236295632503873

Mean Squared Error(MSE)
The most commonly used metric is Mean Square error or MSE. It is a function
used to calculate the loss. We find the difference between the predicted values
and the truth variable, square the result and then find the average over the
whole dataset. MSE is always positive as we square the values. The small the
MSE better is the performance of our model. The formula of MSE is given:
MSE = ∑(ypred - yactual)2 / N

 Python3

mse = mean_squared_error(y_true=Y_test,

 y_pred=Y_pred)

print("Mean Square Error", mse)

Output:
Mean Square Error 3.9808057060106954

https://www.geeksforgeeks.org/how-to-calculate-mean-absolute-error-in-python/
https://www.geeksforgeeks.org/python-mean-squared-error/

Root Mean Squared Error(RMSE)
RMSE is a popular method and is the extended version of MSE(Mean Squared
Error). This method is basically used to evaluate the performance of our
model. It indicates how much the data points are spread around the best line.
It is the standard deviation of the Mean squared error. A lower value means
that the data point lies closer to the best fit line.
RMSE=√(∑(ypred - yactual)2 / N)

 Python3

rmse = mean_squared_error(y_true=Y_test,

 y_pred=Y_pred,

 squared=False)

print("Root Mean Square Error", rmse)

Output:
Root Mean Square Error 1.9951956560725306

Mean Absolute Percentage Error (MAPE)
MAPE is basically used to express the error in terms of percentage. It is
defined as the difference between the actual and predicted value. The error is
then divided by the actual value. The results are then summed up and finally,
we calculate the average. Smaller the percentage better the performance of
the model. The formula is given by
MAPE = ∑((ypred-yactual) / yactual) / N * 100 %

 Python3

mape = mean_absolute_percentage_error(Y_test,

 Y_pred,

 sample_weight=None,

 multioutput='uniform_average')

https://www.geeksforgeeks.org/ml-mathematical-explanation-of-rmse-and-r-squared-error/
https://www.geeksforgeeks.org/how-to-calculate-mape-in-python/

print("Mean Absolute Percentage Error", mape)

Output:
Mean Absolute Percentage Error 0.02334408993333347

