
Machine Learning Model Evaluation 
 

Machine Learning Model does not require hard-coded algorithms. We feed a 
large amount of data to the model and the model tries to figure out the features 
on its own to make future predictions. So we must also use some techniques 
to determine the predictive power of the model. 

Machine Learning Model Evaluation 
Model evaluation is the process that uses some metrics which help us to 
analyze the performance of the model. As we all know that model development 
is a multi-step process and a check should be kept on how well the model 
generalizes future predictions. Therefore evaluating a model plays a vital role 
so that we can judge the performance of our model. The evaluation also helps 
to analyze a model’s key weaknesses. There are many metrics like Accuracy, 
Precision, Recall, F1 score, Area under Curve, Confusion Matrix, and Mean 
Square Error. Cross Validation is one technique that is followed during the 
training phase and it is a model evaluation technique as well. 

Cross Validation and Holdout 

Cross Validation is a method in which we do not use the whole dataset for 
training. In this technique, some part of the dataset is reserved for testing the 
model. There are many types of Cross-Validation out of which K Fold Cross 
Validation is mostly used. In K Fold Cross Validation the original dataset is 
divided into k subsets. The subsets are known as folds. This is repeated k 
times where 1 fold is used for testing purposes. Rest k-1 folds are used for 
training the model. So each data point acts as a test subject for the model as 
well as acts as the training subject. It is seen that this technique generalizes 
the model well and reduces the error rate 

Holdout is the simplest approach. It is used in neural networks as well as in 
many classifiers.  In this technique, the dataset is divided into train and test 
datasets. The dataset is usually divided into ratios like 70:30 or 80:20. 
Normally a large percentage of data is used for training the model and a small 
portion of the dataset is used for testing the model. 

Evaluation Metrics for Classification Task 
In this Python code, we have imported the iris dataset which has features like 
the length and width of sepals and petals. The target values are Iris setosa, 
Iris virginica, and Iris versicolor. After importing the dataset we divided the 
dataset into train and test datasets in the ratio 80:20. Then we called Decision 
Trees and trained our model. After that, we performed the prediction and 
calculated the accuracy score, precision, recall, and f1 score. We also plotted 
the confusion matrix. 

https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://www.geeksforgeeks.org/precision-recall-curve-ml/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/


Importing Libraries and Dataset 

Python libraries make it very easy for us to handle the data and perform 
typical and complex tasks with a single line of code. 
 Pandas – This library helps to load the data frame in a 2D array format and 

has multiple functions to perform analysis tasks in one go. 
 Numpy – Numpy arrays are very fast and can perform large computations 

in a very short time. 
 Matplotlib/Seaborn – This library is used to draw visualizations. 
 Sklearn – This module contains multiple libraries having pre-implemented 

functions to perform tasks from data preprocessing to model development 
and evaluation. 

 Python3 

import pandas as pd  

import numpy as np  

from sklearn import tree  

from sklearn import datasets  

from sklearn.datasets import load_iris  

from sklearn.tree import DecisionTreeClassifier  

from sklearn.model_selection import train_test_split  

import seaborn as sns  

import matplotlib.pyplot as plt  

from sklearn.metrics import precision_score,\  

recall_score, f1_score, accuracy_score 

Now let’s load the toy dataset iris flowers from the sklearn.datasets library and 
then split it into training and testing parts (for model evaluation) in the 80:20 
ratio. 

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://www.geeksforgeeks.org/python-numpy/
https://www.geeksforgeeks.org/matplotlib-tutorial/
https://www.geeksforgeeks.org/introduction-to-seaborn-python/


 Python3 

iris = load_iris()  

X = iris.data  

y = iris.target  

   

# Holdout method.Dividing the data into train and test  

X_train, X_test,\  

    y_train, y_test = train_test_split(X, y,  

                                       random_state=20,  

                                       test_size=0.20)  

Now, let’s train a Decision Tree Classifier model on the training data, and then 
we will move on to the evaluation part of the model using different metrics. 

 Python3 

tree = DecisionTreeClassifier()  

tree.fit(X_train, y_train)  

y_pred = tree.predict(X_test)  

Accuracy 
Accuracy is defined as the ratio of the number of correct predictions to the 
total number of predictions. This is the most fundamental metric used to 
evaluate the model. The formula is given by 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 



However, Accuracy has a drawback. It cannot perform well on an imbalanced 
dataset. Suppose a model classifies that the majority of the data belongs to 
the major class label. It yields higher accuracy. But in general, the model 
cannot classify on minor class labels and has poor performance. 

 Python3 

print("Accuracy:", accuracy_score(y_test,  

                                  y_pred))  

Output: 
Accuracy: 0.9333333333333333 

Precision and Recall 
Precision is the ratio of true positives to the summation of true positives and 
false positives. It basically analyses the positive predictions. 

Precision = TP/(TP+FP) 

The drawback of Precision is that it does not consider the True  Negatives and 
False Negatives. 

Recall is the ratio of true positives to the summation of true positives and false 
negatives. It basically analyses the number of correct positive samples. 

Recall = TP/(TP+FN) 

The drawback of Recall is that often it leads to a higher false positive rate. 

 Python3 

print("Precision:", precision_score(y_test,  

                                    y_pred,  

                                    average="weighted"))  

   



print('Recall:', recall_score(y_test,  

                              y_pred,  

                              average="weighted"))  

Output: 
Precision: 0.9435897435897436 

Recall: 0.9333333333333333 

F1 score 
The F1 score is the harmonic mean of precision and recall. It is seen that 
during the precision-recall trade-off if we increase the precision, recall 
decreases and vice versa. The goal of the F1 score is to combine precision 
and recall.  

F1 score = (2×Precision×Recall)/(Precision+Recall) 

 Python3 

# calculating f1 score  

print('F1 score:', f1_score(y_test, y_pred,  

                            average="weighted"))  

Output: 
F1 score: 0.9327777777777778 

Confusion Matrix 
A confusion matrix is an N x N matrix where N is the number of target classes. 
It represents the number of actual outputs and the predicted outputs. Some 
terminologies in the matrix are as follows: 

 True Positives: It is also known as TP. It is the output in which the actual 
and the predicted values are YES. 

 True Negatives:  It is also known as TN. It is the output in which the actual 
and the predicted values are NO. 

 False Positives: It is also known as FP. It is the output in which the actual 
value is NO but the predicted value is YES. 



 False Negatives:  It is also known as FN. It is the output in which the actual 
value is YES but the predicted value is NO. 

 Python3 

confusion_matrix = metrics.confusion_matrix(y_test,  

                                            y_pred)  

   

cm_display = metrics.ConfusionMatrixDisplay(  

    confusion_matrix=confusion_matrix,  

    display_labels=[0, 1, 2])  

   

cm_display.plot()  

plt.show()  

Output: 

 
Confusion matrix for the output of the model 



In the output, the accuracy of the model is 93.33%. Precision is approximately 
0.944  and Recall is 0.933. F1 score is approximately 0.933. Finally, the 
confusion matrix is plotted. Here class labels denote the target classes:  

0 = Setosa 

1 = Versicolor 

2 = Virginica 

From the confusion matrix, we see that 8 setosa classes were correctly 
predicted. 11 Versicolor test cases were also correctly predicted by the model 
and 2 virginica test cases were misclassified. In contrast, the rest 9 were 
correctly predicted. 

AUC-ROC Curve 
AUC (Area Under Curve) is an evaluation metric that is used to analyze the 
classification model at different threshold values. The Receiver Operating 
Characteristic(ROC) curve is a probabilistic curve used to highlight the 
model’s performance. The curve has two parameters: 
 TPR: It stands for True positive rate. It basically follows the formula of 

Recall. 
 FPR: It stands for False Positive rate. It is defined as the ratio of False 

positives to the summation of false positives and True negatives. 
This curve is useful as it helps us to determine the model’s capacity to 
distinguish between different classes. Let us illustrate this with the help of a 
simple Python example 

 Python3 

import numpy as np  

from sklearn .metrics import roc_auc_score  

   

y_true = [1, 0, 0, 1]  

y_pred = [1, 0, 0.9, 0.2]  

auc = np.round(roc_auc_score(y_true,  

https://www.geeksforgeeks.org/receiver-operating-characteristic-roc-with-cross-validation-in-scikit-learn/
https://www.geeksforgeeks.org/receiver-operating-characteristic-roc-with-cross-validation-in-scikit-learn/


                             y_pred), 3)  

print("Auc", (auc))  

Output: 
Auc 0.75 

AUC score is a useful metric to evaluate the model. It basically highlights a 
model’s capacity to separate the classes. In the above code, 0.75 is a good 
AUC score. A model is considered good if the AUC score is greater than 0.5 
and approaches 1. A poor model has an AUC score of 0. 

Evaluation Metrics for Regression Task 
Regression is used to determine continuous values. It is mostly used to find a 
relation between a dependent and an independent variable. For classification, 
we use a confusion matrix, accuracy, f1 score, etc. But for regression analysis, 
since we are predicting a numerical value it may differ from the actual 
output.  So we consider the error calculation as it helps to summarize how 
close the prediction is to the actual value. There are many metrics available 
for evaluating the regression model. 

In this Python Code, we have implemented a simple regression model using 
the Mumbai weather CSV file. This file comprises Day, Hour, Temperature, 
Relative Humidity, Wind Speed, and Wind Direction. The link for the dataset 
is here. 
 We are basically interested in finding a relationship between Temperature 
and Relative Humidity. Here Relative Humidity is the dependent variable and 
Temperature is the independent variable. We performed the Linear 
Regression and used the metrics to evaluate the performance of our model. 
To calculate the metrics we make extensive use of sklearn library. 

 Python3 

# importing the libraries  

from sklearn.linear_model import LinearRegression  

from sklearn.metrics import mean_absolute_error,\  

https://drive.google.com/file/d/1aceVEI78wW-cde7CPwE-XkIvh4Wl0MF7/view?usp=share_link


    mean_squared_error, mean_absolute_percentage_error  

Now let’s load the data into the panda’s data frame and then split it into training 
and testing parts (for model evaluation) in the 80:20 ratio. 

 Python3 

df = pd.read_csv('weather.csv')  

X = df.iloc[:, 2].values  

Y = df.iloc[:, 3].values  

X_train, X_test,\  

    Y_train, Y_test = train_test_split(X, Y,  

                                       test_size=0.20,  

                                       random_state=0)  

Now, let’s train a simple linear regression model. On the training data and we 
will move to the evaluation part of the model using different metrics. 

 Python3 

X_train = X_train.reshape(-1, 1)  

X_test = X_test.reshape(-1, 1)  

regression = LinearRegression()  

regression.fit(X_train, Y_train)  

Y_pred = regression.predict(X_test) 



Mean Absolute Error(MAE) 
This is the simplest metric used to analyze the loss over the whole dataset. As 
we all know the error is basically the difference between the predicted and 
actual values. Therefore MAE is defined as the average of the errors 
calculated. Here we calculate the modulus of the error, perform the summation 
and then divide the result by the number of data points.  It is a positive quantity 
and is not concerned about the direction. The formula of MAE is given by 
MAE = ∑|ypred-yactual| / N 

 Python3 

mae = mean_absolute_error(y_true=Y_test,  

                          y_pred=Y_pred)  

print("Mean Absolute Error", mae)  

Output: 
Mean Absolute Error 1.7236295632503873 

Mean Squared Error(MSE) 
The most commonly used metric is Mean Square error or MSE. It is a function 
used to calculate the loss. We find the difference between the predicted values 
and the truth variable, square the result and then find the average over the 
whole dataset. MSE is always positive as we square the values. The small the 
MSE better is the performance of our model. The formula of MSE is given: 
MSE = ∑(ypred - yactual)2 / N 

 Python3 

mse = mean_squared_error(y_true=Y_test,  

                         y_pred=Y_pred)  

print("Mean Square Error", mse) 

Output: 
Mean Square Error 3.9808057060106954 

https://www.geeksforgeeks.org/how-to-calculate-mean-absolute-error-in-python/
https://www.geeksforgeeks.org/python-mean-squared-error/


Root Mean Squared Error(RMSE) 
RMSE is a popular method and is the extended version of MSE(Mean Squared 
Error). This method is basically used to evaluate the performance of our 
model. It indicates how much the data points are spread around the best line. 
It is the standard deviation of the Mean squared error. A lower value means 
that the data point lies closer to the best fit line. 
RMSE=√(∑(ypred - yactual)2 / N) 

 Python3 

rmse = mean_squared_error(y_true=Y_test,  

                          y_pred=Y_pred,  

                          squared=False)  

print("Root Mean Square Error", rmse)  

Output: 
Root Mean Square Error 1.9951956560725306 

Mean Absolute Percentage Error (MAPE) 
MAPE is basically used to express the error in terms of percentage. It is 
defined as the difference between the actual and predicted value. The error is 
then divided by the actual value. The results are then summed up and finally, 
we calculate the average. Smaller the percentage better the performance of 
the model. The formula is given by 
MAPE = ∑((ypred-yactual) / yactual) / N * 100 % 

 Python3 

mape = mean_absolute_percentage_error(Y_test,  

                                      Y_pred,  

                                      sample_weight=None,  

                                      multioutput='uniform_average')  

https://www.geeksforgeeks.org/ml-mathematical-explanation-of-rmse-and-r-squared-error/
https://www.geeksforgeeks.org/how-to-calculate-mape-in-python/


print("Mean Absolute Percentage Error", mape)  

Output: 
Mean Absolute Percentage Error 0.02334408993333347 

 


