Economic Dispatch Without Loss Solution of λ iteration method without loss (Algorithm)

Case (i) operating limits of power generation are not specified

$$\lambda = \frac{P_D + \sum_{i=1}^{N} \frac{b_i}{2a_i}}{\sum_{i=1}^{N} \frac{1}{2a_i}}$$

Step 2: compute P_{gi} corresponding to λ using the equation

$$C_i(P_{Gi}) = aP^2_{Gi} + b P_{Gi} + c_i$$

Incremental cost (IC) =
$$\frac{dC_i(P_{gi})}{dP_{gi}}$$
 = $2a_iP_{gi} + b_i = \lambda$

$$P_{gi} = \frac{\lambda - b_i}{2a_i}$$

Step 3: compute $\sum_{i=1}^{n} P_{gi}$

Step 4: check for power balance equation $P_D = \sum_{i=1}^{N} P_{Gi}$

The power balance equation is satisfied, then the optimum solution is obtained otherwise go to next step.

Step 5:

$$if \sum_{i=1}^{N} P_{gi} < P_{D}$$

Assign $\lambda + \Delta \lambda$ (i.e.,) increment λ and go to step 2

$$if \sum_{i=1}^{\infty} P_{gi} > P_{D}$$

Assign $\lambda - \Delta \lambda$ (i.e.,) increment λ and go to step 2

Where

$$\Delta \lambda = \frac{\Delta P}{\sum_{i=1}^{N} \frac{1}{2a_i}}$$

 ΔP is change in demand

Case (ii) operating limits of power generation are specified

Step 1: Assign the initial values of λ or calculate using

$$\lambda = \frac{P_D + \sum_{i=1}^{N} \frac{b_i}{2a_i}}{\sum_{i=1}^{N} \frac{1}{2a_i}}$$

Step 2: compute P_{gl} corresponding to λ using the equation

$$P_{gi} = \frac{\lambda - b_i}{2a_i}$$

Step 3: if the computed P_{gi} satisfies the operating limits,

$$P_{Gi min} < P_{Gi} < P_{Gi max}$$

For i = 1,2,..., N, then the optimum solution is obtained, otherwise go to next step

Step 4: if P_{gl} violates the operating limits, hen fix the generation at the respective limit.

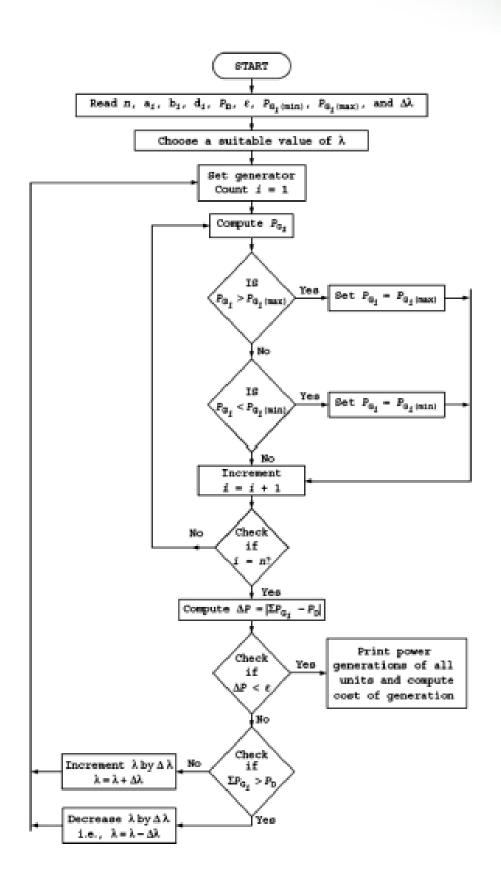
$$P_{Gi} < P_{Gi,min}$$
, then $Fix P_{Gi} = P_{Gi,min}$

$$P_{Gi} > P_{Gi,max}$$
, then $Fix P_{Gi} = P_{Gi,max}$

Step 5: Redistribute the remaining system load PD

 $P_{D new} = P_{D old} - sum of fixed generations to the remaining unit$

Step 6: compute λ new using $P_{D new}$ and compute the remaining generations using


$$P_{gi} = \frac{\lambda_{new} - b_i}{2a_i}$$

Step 7: check whether optimal conditions is satisfied. If the condition is satisfied then stop. Otherwise release the generation schedule fixed at $P_{Gl,mln}$ or $P_{Gl,max}$ of those units not satisfying the optimal condition. Include these units in the remaining units and modify the new power demand

 $P_{D new,1} = P_{D new} + sum of fixed generators not satisfying the optimal condition$

And go to step 6

EDC neglecting losses flowchart

