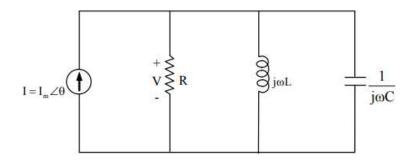
Three Branch Parallel RLC circuits



Mr.Ebbie Selva Kumar C

Assistant Professor/ EEE Rohini College of Engineering and Technology

Three Branch Parallel RLC circuits :

Parallel RLC is the dual of series RLC. Fig. 5.9 shows the three branch parallel RLC circuit.

The circuit admittance is,
$$Y = \frac{I}{V} = \frac{1}{R} + j\omega C + \frac{1}{j\omega L}$$

(or)
$$Y = \frac{1}{R} + j \left(\omega_c - \frac{1}{\omega L} \right)$$

Resonance occurs when imaginary part of Y is zero,

$$\omega C - \frac{1}{\omega L} = 0 \Longrightarrow \frac{1}{X_{c}} - \frac{1}{X_{L}} = 0 \Longrightarrow X_{L} = X_{c}$$
(or)

$$\Rightarrow \omega_0 L = \frac{1}{\omega_0 C} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}} \text{ sec.}$$

The resonant frequency in Hz is $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}}$ Hz

The voltage Vs frequency curve is shown in fig. 5.10. At resonance, parallel LC acts like open circuit. So, the entire current flows through R. Also, $I_c \& I_L$ can be much more than source current at resonance.



Fig. 5.10 Voltage Vs frequency curve

By comparing Z in series RLC and Y in parallel RLC & replacing R, L, C with $\frac{1}{R}, \frac{1}{L}, \frac{1}{C}$

:.
$$\omega_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}; \qquad \omega_2 = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}};$$

Bandwidth, BW = $\omega_2 - \omega_1 = \frac{1}{RC}$

Quality factor,
$$Q = \frac{\omega_0}{B} = \omega_0 R_C = \frac{R}{\omega_0 L}$$

For high Q-circuits, $(Q \ge 10)$

$$\omega_1 \simeq \omega_0 - \frac{BW}{2}; \ \omega_2 \simeq \omega_0 + \frac{BW}{2}$$

Thank You

