ROHINI COLLEGE OF ENGINEERING

UNIT III CONTINUOUS INTEGRATION USING JENKINS 6
Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job,
Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins,
Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact
and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven,
Creating a Jenkins Build and Jenkins workspace.

INTRODUCTION TO PLUGINS

Plugins are extensions that enhance Jenkins functionality. They allow Jenkins to integrate

with other tools, support new build steps, report formats, notifications, version control

systems, and more. Essentially, plugins make Jenkins highly flexible and customizable.

Plugins use their own set of Java Annotations and design patterns that define how the

plugin is instantiated, extension points, the function of the plugin and the UI

representation in the Jenkins Web UI

Benefits of using Plugins:

Following are the benefits that are observed when the Jenkins plugins are used

1. Extended functionality: Plugins can be used to add new features to jenkins. Many
plugins are open-source and maintained by the Jenkins community. This means that
the improvements are made by a larger user base.

2. Task automation: Plugins can be used to automate various tasks related to software
development such as building, testing, deployment of library files to executable
environment.

3. Scalability: We can add or remove the plugin as per the requirements of the project
and thereby Jenkins meets the requirements of organization.

4. Security: Jenkins plugins are useful to make the job secure by iterating with security
tools, vulnerability scanners.

5. Continuous Improvement: Jenkins is an automated tool. Developers continuously
create new plugins or improve the existing ones. Thus continuous improvement is
made with the latest technologies.

6. Increased flexibility: Plugins can be used to increase the flexibility of Jenkins. For
example, Amazon EC2 plugin allows you to deploy the application from cloud
platform or Git plugin allows you to deploy the application from GitHub repository.
There are various ways by which the desired activity can be carried out in Jenkins.

Adding Plugins To Jenkins

e The simplest and most common way of installing plugins is through the Manage
Jenkins — Plugins view, available to administrators of a Jenkins environment.

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

e Locate the desired plugin from the list or else we can search the plugin by typing
plugins names. Suppose if we wish to install HTML Publisher plugin then we can
either locate it in the list or we can simply type the name of that plugin in the search
window.

e C(lick install button

Thus the plugin is installed

COMMONLY USED PLUGINS

Following is a list of some popularly used plugins are:

1. Git Plugin: The git plugin provides fundamental git operations for Jenkins projects. It
can poll, fetch, checkout, branch, list, merge, tag and push repositories.

2. Docker Plugin: The jenkins cloud plugin for Docker is the most effective solution for
Devops engineers to integrate Jenkins with Docker.

3. Amazon EC2Plugin: Amazon EC2 plugin lets Jenkins start up new EC2 on demand
and shut down them when they are no longer needed.

4. SonarQube plugin: SonarQube is an open source tool used for continuous code
quality inspection. The Jenkins monitoring plugin allows us to integrate SonarQube
intoJenkins so that we can easily analyze a code while running a Jenkins job that
comes with SonarQube execution.

5. Jira Plugin: Jira plugin is one of the most popular plugins. It is an open-source plugin
that integrates Jenkins with the Atlassian Jira Software (both Cloud and Server
versions), enabling the DevOps teams more visibility into the development pipeline.

GIT PLUGIN

The Git plugin is used to perform fundamental git operations for Jenkins project.
When the Git plugin is installed in Jenkins then we can perform pull, fetch, branch, list,
merge or push operations.

How to install the Git Plugin?

For installing the Git plugin just login to the Jenkins and click the Manage
Jenkins. Open the plugins section and install the GitHub plugin.

Once the Jenkins Git Plugin is installed and configured, our Jenkins build jobs can
poll any local or remote repositories for new commits. The cron expression is used for
job scheduling periodically.

Example Demo

Step 1: Create a simple Java program. I have created a folder named MyJavaPrograms

and inside it created a simple Java program as follows -

test.java

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

public class test

{
public static void main(String args[])
{
for(int i=1; i<=5; i++)
{
System.out.println("Welcome Anuradha");
}
b
b

Step 2: Open the command prompt, switch to that folder and execute the above Java
program. It is illustrated by the following screenshot.

C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.0.22621.2134]

(c) Microsoft Corporation. All rights reserved.

E:\MylJavaPrograms>javac test.java
E:\MyJavaPrograms>java test
Welcome Anuradha

Welcome Anuradha

Welcome Anuradha

Welcome Anuradha

Welcome Anuradha

E:\MylJavaPrograms>

Step 3: Now we will create a Git repository and push this repository on GitHub. First of
all we will initialise the Git repository by using git init command.
C:\Windows\System32\cmd.exe
E:\MyJavaPrograms>git init
Initialized empty Git repository in E:/MyJavaPrograms/.git/
E:\MylJavaPrograms>git status
On branch master
No commits yet
Untracked files:

(use "git add <file>..." to include in what will be committed)

test.class

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

test.java
nothing added to commit but untracked files present (use "git add" to track)
E:\MyJavaPrograms>
then add the java and class files to git repository -
C:\Windows\System32\cmd.exe
E:\MylJavaPrograms>git add .

E:\MyJavaPrograms>git status
On branch master
No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: test.class
new file: test.java
E:\MylJavaPrograms>
Now we will commit the changes -
C:\Windows\System32\cmd.exe
E:\MyJavaPrograms>git commit -m "First Commit For Java program"
[master (root-commit) 4c6040b] First Commit For Java program
2 files changed, 6 insertions(+)
create mode 100644 test.class
create mode 100644 test.java
E:\MylJavaPrograms>
Now we will Create a repository on GitHub and push the above committed git repository
on the GitHub.
Open the browser and Go to GitHub.com and log in.
Click “New Repository™.
Enter the repository name, for example:
MylJavaPrograms
e Choose Public or Private as desired.
Click “Create a new repository”.
Copy the repository URL
After creation, copy the HTTPS URL.:
https://github.com/AnuradhaP/MyJavaPrograms.git
e Link local repository to GitHub
Open the command prompt and navigate to your local project directory
(MylJavaPrograms).

CCS342 - DEVOPS

https://github.com/

ROHINI COLLEGE OF ENGINEERING

Add the remote repository:
git remote add origin https://github.com/AnuradhaP/MyJavaPrograms.git
e Push code to GitHub
Push your local commits to the remote repository:
git push -u origin master
e Refresh your GitHub repository page and we now see the uploaded files, such as:
test.java
test.class
e The commit message (e.g., “First Commit for Java program”) will also appear beside
the files
e The next step is to create a job in Jenkins that uses the GitHub plugin to access the
GitHub repository.
PARAMETERIZED PLUGIN
A Parameterized Job in Jenkins allows you to create jobs that take parameters (like
strings, numbers, or boolean values) when triggered. This helps you customize the job’s
behavior based on the values provided at runtime. It’s useful for jobs where the same task
may need to be executed with different configurations.
Use Cases:
e Dynamic Builds — Run the same job with different inputs without modifying the
configuration manually.
e Improved Reusability — Use a single Jenkins job for multiple environments,
configurations, or test cases.
e Time-Saving Automation — Execute builds, tests, and deployments automatically with
varying parameters instead of creating multiple jobs.
e Efficient CI/CD Pipelines — Makes software testing and application deployment more
flexible and scalable.
Here are the steps to create a Parameterized Job in Jenkins:
Step 1: Select the Jenkins Job to Add Parameters
Select the Job which you are planning to add parameters:
jenkins job list
Step 2: Configure the Jenkins Job
You can Configure the Job with the left Side of the job list which shown below.

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

o
®

&
“

Dashboard Parameteriob

B status (¥) ParameterJob
</> Changes .

Permalinks
B workspace

[> suild with Parameters

@ Configure

Delete Project

5? Rename

Builds

@ #3 2040

Configure job left Side Section
Step 3: Enable Parameterized Builds

£ Add description

On the configuration page, you will find a section which is General. In that

section, there is an option called This project is parameterized that will be Tick marked
already like shown in bellow.

Dashboard Parameterlob Configuration
Configure General
@3 General Description

P‘ Source Code Management

& puild Triggers

@ Build Environment

{= Build Steps
@ Post-build Actions Discard old builds 7
GitHub project
This project is parameterized ?
= String Parameter 7

Name ?

USER_NAME

Step 4: Click on the add parameters.

Enabled o

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

Dashboard parameterizedJobJenkins Configuration

Configure General eaved (@)

@ General Description

¥ source Code Management

@

Build Triggers

Li:]

Build Envircnment

4
¢S Build Steps Platin:text Brevion
@ Post-build Actions Discard old builds ?

GitHub project

This project is parameterized ?
Add Parameter ~

7 Filter

Boolean Parameter
Choice Parameter v
Ad Credentials Parameter
File Parameter
Multi-line String Parameter
Soul Password Parameter

o

String Parameter
TR

Run Parameter

Click on the add parameters in jenkins job
Step 5: Define the Parameter

We can Select the String Parameters and In the Name field, enter the name of the
parameters(USER_NAME), and the Default value Select as per your need.

Dashboard » Parameteriob > Configuration

Configure
Z
Plain text Preview
83 General et Brene
% source Code Management Discard old builds ?

 Build Triggers GitHub project

Build Environment . ;.
@ This project is parameterized 7

*E euild Steps

= String Parameter ?
@ rost-build Actions
Name ?

USER_NAME

Default Value 2

Vaibhav Gaikwad

Description ?

ain text Preview

Trim the string 7

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

String parameters provided
Step 6: Save the Job Configuration

Dashboard Parameteriob

Ei Status @ ParameterJob £ Add description
<[> Changes .

Permalinks
B3 workspace

[> Build with Parameters

@ Configure

@ Delete Project

f Rename

Builds

Build With parameters option
Step 7: Then you will see the option which is "Build with Parameters"

Enter the desired value for each parameter. Once you have done with filling the
required values then click on Build to run the job.

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

Dashboard Parameteriob

Status Project ParameterJob

<[> Changes This E

Workspace
EI P USER_NAME

[> Build with Parameters Vaibhav Gaikwad

@ Configure

ENVIRONMENT
[@ Delete Project

£ Rename

Development 2

=3 30471

@ =2 3028

Values provided to the job
Step 9: Monitor the Job Execution
See the result with clicking the job which are success in the Console output.

Dashboard ParameterJob

E Status @ ParameterJob £ Add description
<[> Changes ;

Permalinks
B3 workspace

[> Build with Parameters

@ Configure

[ﬂ] Delete Project

i Rename
Builds
@ =
<> Changes
E Conscle Qutput
N [Edit Build Information
. i Delete build 4
== Parameters
® Timings
job status of
parameterized job

Step 10: See the Result in the Console Output tab.

CCS342 - DEVOPS

ROHINI COLLEGE OF ENGINEERING

S|

<>

(&

& o

ot

T &

Dashboard

Status

Changes

Console Qutput

Edit Build Information
Delete build “#4°
Parameters

Timings

Previous Build

ParameterJob

® Console

Console Qutput

& Download D) copy View as plain text

Output

Started by user unknown or anonymous

Running as SYSTEM

Building in workspace C:\Users\GF@B329\.jenkins\workspace\Parameterlob
[Parameterdob] % cmd /c call
C:\Users\GFGR329\AppData\Local\Temp\jenkins18247186707338172356. bat

C:\Users\GFG8329\ . jenkins\workspace'ParameterJob>echo "Hello, Waibhav
Gaikwad! You have selected the Development environment.™
"Hello, Vaibhav Gaikwad! You have selected the Development

environment."

C:\Users\GFGB329\ . jenkins\workspace\ParameterJobrexit @
Finished: SUCCESS

CCS342 - DEVOPS

