
 ROHINI COLLEGE OF ENGINEERING

 UNIT III CONTINUOUS INTEGRATION USING JENKINS 6
 Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job,
 Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins,
 Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact
 and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven,
 Creating a Jenkins Build and Jenkins workspace.

 INTRODUCTION TO PLUGINS
 Plugins are extensions that enhance Jenkins functionality. They allow Jenkins to integrate
 with other tools, support new build steps, report formats, notifications, version control
 systems, and more. Essentially, plugins make Jenkins highly flexible and customizable.
 Plugins use their own set of Java Annotations and design patterns that define how the
 plugin is instantiated, extension points, the function of the plugin and the UI
 representation in the Jenkins Web UI
 Benefits of using Plugins:
 Following are the benefits that are observed when the Jenkins plugins are used
 1. Extended functionality: Plugins can be used to add new features to jenkins. Many

 plugins are open-source and maintained by the Jenkins community. This means that
 the improvements are made by a larger user base.

 2. Task automation: Plugins can be used to automate various tasks related to software
 development such as building, testing, deployment of library files to executable
 environment.

 3. Scalability: We can add or remove the plugin as per the requirements of the project
 and thereby Jenkins meets the requirements of organization.

 4. Security: Jenkins plugins are useful to make the job secure by iterating with security
 tools, vulnerability scanners.

 5. Continuous Improvement: Jenkins is an automated tool. Developers continuously
 create new plugins or improve the existing ones. Thus continuous improvement is
 made with the latest technologies.

 6. Increased flexibility: Plugins can be used to increase the flexibility of Jenkins. For
 example, Amazon EC2 plugin allows you to deploy the application from cloud
 platform or Git plugin allows you to deploy the application from GitHub repository.
 There are various ways by which the desired activity can be carried out in Jenkins.

 Adding Plugins To Jenkins
 ● The simplest and most common way of installing plugins is through the Manage

 Jenkins → Plugins view, available to administrators of a Jenkins environment.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 ● Locate the desired plugin from the list or else we can search the plugin by typing
 plugins names. Suppose if we wish to install HTML Publisher plugin then we can
 either locate it in the list or we can simply type the name of that plugin in the search
 window.

 ● Click install button
 Thus the plugin is installed

 COMMONLY USED PLUGINS
 Following is a list of some popularly used plugins are:
 1. Git Plugin: The git plugin provides fundamental git operations for Jenkins projects. It

 can poll, fetch, checkout, branch, list, merge, tag and push repositories.
 2. Docker Plugin: The jenkins cloud plugin for Docker is the most effective solution for

 Devops engineers to integrate Jenkins with Docker.
 3. Amazon EC2Plugin: Amazon EC2 plugin lets Jenkins start up new EC2 on demand

 and shut down them when they are no longer needed.
 4. SonarQube plugin: SonarQube is an open source tool used for continuous code

 quality inspection. The Jenkins monitoring plugin allows us to integrate SonarQube
 intoJenkins so that we can easily analyze a code while running a Jenkins job that
 comes with SonarQube execution.

 5. Jira Plugin: Jira plugin is one of the most popular plugins. It is an open-source plugin
 that integrates Jenkins with the Atlassian Jira Software (both Cloud and Server
 versions), enabling the DevOps teams more visibility into the development pipeline.

 GIT PLUGIN
 The Git plugin is used to perform fundamental git operations for Jenkins project.

 When the Git plugin is installed in Jenkins then we can perform pull, fetch, branch, list,
 merge or push operations.
 How to install the Git Plugin?

 For installing the Git plugin just login to the Jenkins and click the Manage
 Jenkins. Open the plugins section and install the GitHub plugin.

 Once the Jenkins Git Plugin is installed and configured, our Jenkins build jobs can
 poll any local or remote repositories for new commits. The cron expression is used for
 job scheduling periodically.
 Example Demo
 Step 1: Create a simple Java program. I have created a folder named MyJavaPrograms
 and inside it created a simple Java program as follows -
 test.java

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 public class test
 {

 public static void main(String args[])
 {

 for(int i=1; i<=5; i++)
 {

 System.out.println("Welcome Anuradha");
 }

 }
 }
 Step 2: Open the command prompt, switch to that folder and execute the above Java
 program. It is illustrated by the following screenshot.

 C:\Windows\System32\cmd.exe
 Microsoft Windows [Version 10.0.22621.2134]
 (c) Microsoft Corporation. All rights reserved.

 E:\MyJavaPrograms>javac test.java
 E:\MyJavaPrograms>java test
 Welcome Anuradha
 Welcome Anuradha
 Welcome Anuradha
 Welcome Anuradha
 Welcome Anuradha

 E:\MyJavaPrograms>

 Step 3: Now we will create a Git repository and push this repository on GitHub. First of
 all we will initialise the Git repository by using git init command.
 C:\Windows\System32\cmd.exe
 E:\MyJavaPrograms>git init
 Initialized empty Git repository in E:/MyJavaPrograms/.git/
 E:\MyJavaPrograms>git status
 On branch master
 No commits yet
 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 test.class

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 test.java
 nothing added to commit but untracked files present (use "git add" to track)
 E:\MyJavaPrograms>
 then add the java and class files to git repository -
 C:\Windows\System32\cmd.exe
 E:\MyJavaPrograms>git add .

 E:\MyJavaPrograms>git status
 On branch master
 No commits yet
 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: test.class
 new file: test.java

 E:\MyJavaPrograms>
 Now we will commit the changes -
 C:\Windows\System32\cmd.exe
 E:\MyJavaPrograms>git commit -m "First Commit For Java program"
 [master (root-commit) 4c6040b] First Commit For Java program
 2 files changed, 6 insertions(+)
 create mode 100644 test.class
 create mode 100644 test.java
 E:\MyJavaPrograms>
 Now we will Create a repository on GitHub and push the above committed git repository
 on the GitHub.
 Open the browser and Go to GitHub.com and log in.
 Click “New Repository”.
 Enter the repository name, for example:
 MyJavaPrograms
 ● Choose Public or Private as desired.

 Click “Create a new repository”.
 Copy the repository URL
 After creation, copy the HTTPS URL:
 https://github.com/AnuradhaP/MyJavaPrograms.git

 ● Link local repository to GitHub
 Open the command prompt and navigate to your local project directory
 (MyJavaPrograms).

 CCS342 - DEVOPS

https://github.com/

 ROHINI COLLEGE OF ENGINEERING

 Add the remote repository:
 git remote add origin https://github.com/AnuradhaP/MyJavaPrograms.git

 ● Push code to GitHub
 Push your local commits to the remote repository:
 git push -u origin master

 ● Refresh your GitHub repository page and we now see the uploaded files, such as:
 test.java
 test.class

 ● The commit message (e.g., “First Commit for Java program”) will also appear beside
 the files

 ● The next step is to create a job in Jenkins that uses the GitHub plugin to access the
 GitHub repository.

 PARAMETERIZED PLUGIN
 A Parameterized Job in Jenkins allows you to create jobs that take parameters (like

 strings, numbers, or boolean values) when triggered. This helps you customize the job’s
 behavior based on the values provided at runtime. It’s useful for jobs where the same task
 may need to be executed with different configurations.
 Use Cases:
 ● Dynamic Builds – Run the same job with different inputs without modifying the

 configuration manually.
 ● Improved Reusability – Use a single Jenkins job for multiple environments,

 configurations, or test cases.
 ● Time-Saving Automation – Execute builds, tests, and deployments automatically with

 varying parameters instead of creating multiple jobs.
 ● Efficient CI/CD Pipelines – Makes software testing and application deployment more

 flexible and scalable.
 Here are the steps to create a Parameterized Job in Jenkins:
 Step 1: Select the Jenkins Job to Add Parameters

 Select the Job which you are planning to add parameters:
 jenkins job list

 Step 2: Configure the Jenkins Job
 You can Configure the Job with the left Side of the job list which shown below.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 Configure job left Side Section
 Step 3: Enable Parameterized Builds

 On the configuration page, you will find a section which is General. In that
 section, there is an option called This project is parameterized that will be Tick marked
 already like shown in bellow.

 Step 4: Click on the add parameters.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 Click on the add parameters in jenkins job
 Step 5: Define the Parameter

 We can Select the String Parameters and In the Name field, enter the name of the
 parameters(USER_NAME), and the Default value Select as per your need.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 String parameters provided
 Step 6: Save the Job Configuration

 Build With parameters option
 Step 7: Then you will see the option which is "Build with Parameters"

 Enter the desired value for each parameter. Once you have done with filling the
 required values then click on Build to run the job.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 Values provided to the job
 Step 9: Monitor the Job Execution

 See the result with clicking the job which are success in the Console output.

 job status of
 parameterized job

 Step 10: See the Result in the Console Output tab.

 CCS342 - DEVOPS

 ROHINI COLLEGE OF ENGINEERING

 CCS342 - DEVOPS

