1.2 CO- ORDINATE SYSTEMS

A point or vector can be represented in any curvilinear coordinate system, which may be orthogonal or non orthogonal.

An **orthogonal system** is one in which the coordinates are mutually perpendicular.

To describe a vector accurately and to express a vector in terms of its components, it is necessary to have some reference directions. Such directions are represented in terms of various co-ordinate systems. There are various co-ordinates systems available in mathematics, the co-ordinate systems are

- Cartesian or Rectangular co-ordinate system
- Cylindrical co-ordinate system
- Spherical co-ordinate system

CARTESIAN OR RECTANGULAR CO-ORDINATE SYSTEM

There are three simple methods to describe a vector accurately such as specific lengths, directions, angles, projections or components. The simplest methods of these are Cartesian or Rectangular co-ordinate system.

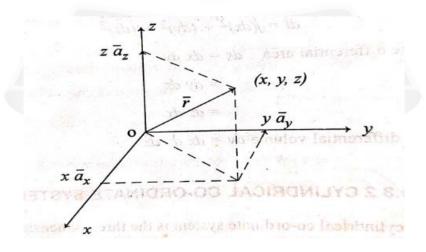


Figure 1.2.1 Cartesian co-ordinate system

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-30]

In Cartesian co-ordinate system three co-ordinate axes x, y, z are mutually right angles to each other. Considered a point P(x, y, z) in space at a distance \mathbf{r} from the origin. The vector \mathbf{r} can be represented as

$$\vec{r} = x \overrightarrow{a_x} + y \overrightarrow{a_y} + z \overrightarrow{a_z}$$

 $\overrightarrow{a_x}$, $\overrightarrow{a_y}$, $\overrightarrow{a_z}$ are Unit Vector

x, *y*, *z* are the components vectors. Components vectors have a magnitude and direction. Unit vectors have unit magnitude and directed along the co-ordinate axis.

A Unit Vector in a given direction is a vector in that direction divided by its magnitude. It is given by

$$\overrightarrow{a_r} = \frac{\overrightarrow{r}}{|r|}$$
 $|r| = \sqrt{x^2 + y^2 + z^2}$
 $\overrightarrow{a_r} = \frac{x\overrightarrow{a}_x + y\overrightarrow{a}_y + z\overrightarrow{a}_z}{\sqrt{x^2 + y^2 + z^2}}$

The ranges of the co-ordinate variables x, y, z are

$$-\infty < x < \infty$$

$$0 \text{PTIMIZE OU}$$

$$-\infty < y < \infty$$

$$-\infty < z < \infty$$

Considered the points P(x, y, z) and Q(x+dx, y+dy, z+dz) in a rectangular co-ordinate system.

The differential length dl from P to Q is the diagonal of the parallel piped is given by

The differential length
$$dl=\sqrt{(d_x)^2+(d_y)^2+(d_z)^2}$$
The differential area $d_s=d_xd_y$
 $d_s=d_yd_z$
 $d_s=d_zd_x$

The differential Volume $d_v = d_x d_v d_z$

CYLINDRICAL CO-ORDINATE SYSTEM

The circular cylindrical co-ordinate system is very convenient whenever we are dealing with problems having cylindrical symmetry.

A point **P** is cylindrical co-ordinates is represented as (ρ, φ, z) and is shown in figure 1.2.2.

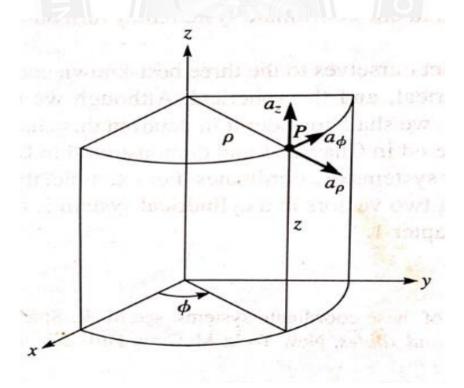


Figure 1.2.2 Point P and unit vector in the cylindrical co-ordinate system

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-30]

- ρ is the radius of cylinder passing through **P** or the radial distance from the **z** axis
- φ called the azimuthal angle, is measured from the x axis in the xy plane
- **z** is the same as in the Cartesian system.

Considered any point as the intersection of three mutually perpendicular surfaces. They is a circular cylinder (ρ =constant), a place (φ =constant), and another place (z =constant)

A differential volume element in cylindrical co-ordinate may obtained by increasing ρ , φ and z by the differential increments $d\rho$, $d\varphi$ and dz. The shape of this small volume is truncated wedge .As the volume element becomes very small.its shape approaches that of a rectangular parallel piped. It has sides of the length $d\rho$, $\rho d\varphi$ and dz

The differential length
$$dl = \sqrt{(d\rho)^2 + (\rho d\varphi)^2 + (dz)^2}$$

The differential area $d_s = d\rho \cdot \rho d\phi = \rho d\rho d\phi$

$$d_s = \rho d\varphi . dz$$

$$d_s = dz \cdot d\rho = d\rho dz$$

The differential Volume $d_v = d\rho \cdot \rho d\phi \cdot dz$

$$d_v = \rho d\rho d\phi dz$$

The ranges of the co-ordinate variables are

$$0 \le \rho < \infty$$

$$0 \le \varphi < 2\pi$$

$$-\infty < z < \infty$$

Now the unit $\operatorname{vector} a_{\rho}$, a_{ϕ} and a_{z} are mutually perpendicular because our co-ordinate system is orthogonal: a_{ρ} points in the direction of increasing ρ , a_{ϕ} in the direction of increasing ϕ and a_{z} in the positive z - direction

$$a_{\rho}$$
. $a_{\rho} = a_{\varphi}$. $a_{\varphi} = a_{z}$. $a_{z} = 1$
 a_{ρ} . $a_{\varphi} = a_{\varphi}$. $a_{z} = a_{z}$. $a_{\rho} = 0$
 $a_{\rho} \times a_{\varphi} = a_{z}$
 $a_{\varphi} \times a_{\varphi} = a_{z}$
 $a_{\varphi} \times a_{z} = a_{\rho}$
 $a_{z} \times a_{\varphi} = a_{\varphi}$

SPHERICAL CO-ORDINATE SYSTEM

The spherical co-ordinate system is most appropriate when one is dealing with problems having a degree of spherical symmetry. A point **P** can be represented as (r, θ, φ) and it is illustrated in figure 1.2.3.

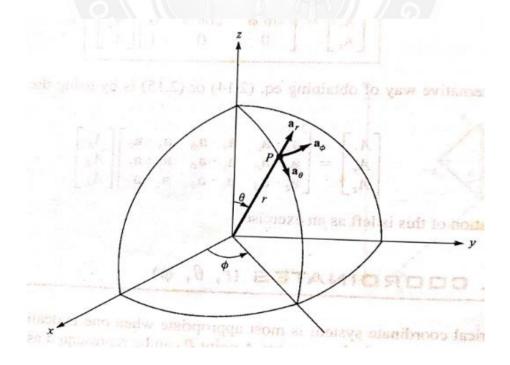


Figure 1.2.3 Point P and unit vector in the spherical co-ordinate

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-34]

- \mathbf{r} is defines as the distance from the origin to \mathbf{P} or the radius of a sphere entered at the origin and passing through \mathbf{P} .
- θ (Called the colatitudes) is the angle between the z axis and position vector of \mathbf{P} .
- φ is measured from the x axis (the same azimuthal angle in cylindrical coordinates)

Considered any point as the intersection of the spherical surfaces $(radius\ r = constant)$, conical surface $(\theta, angle\ between\ r\ and\ z = constant)$, and plane surface $(\phi = constant)$. The co-ordinates of spherical system are r, θ, ϕ

A differential volume element may be obtained in spherical co-ordinate by increasing r, θ and φ by dr, $d\theta$ and $d\varphi$ the sides of this volume element are dr, $rd\theta$ and $r\sin\theta d\varphi$.

The differential length
$$dl = \sqrt{(dr)^2 + (rd\theta)^2 + (r\sin\theta d\varphi)^2}$$

The differential area $d_s = dr \cdot rd\theta = r dr d\theta$

$$d_s = rd\theta \cdot r \sin\theta d\phi = r^2 \sin\theta d\theta d\phi$$

$$d_s = r \sin \theta d\varphi \cdot dr = r \sin \theta d\varphi dr$$

The differential Volume $d_v = dr.rd\theta.r\sin\theta d\phi$

$$d_v = r^2 \sin\theta \ d\theta \ d\varphi \ dr$$

The ranges of the co-ordinate variables are

$$0 \le r < \infty$$

$$0 < \theta < \pi$$

$$\mathbf{0} < \varphi < 2\pi$$

Now the unit vector a_r , a_θ and a_φ are mutually orthogonal: a_r being directed along the radius or in the direction of increasing r, a_θ in the direction of increasing θ and a_φ in the direction of creasing φ .

$$a_r. a_r = a_\theta. a_\theta = a_\phi. a_\phi = 1$$
 $a_r. a_\theta = a_\theta. a_\phi = a_\phi. a_r = 0$
 $a_r \times a_\theta = a_\phi$
 $a_\theta \times a_\phi = a_r$
 $a_\phi \times a_r = a_\theta$

TRANSFORMATION OF CO-ORDINATE SYSTEM

It is necessary to transform a vector from one co-ordinate system to another coordinate system. Transformation of a vector between Cartesian and cylindrical coordinate system and Cartesian and spherical system are carried out.

(A) Transformation between Cartesian and cylindrical systems

A vector in Cartesian co-ordinate system can be converted into cylindrical co-ordinates system.

(i) Conversion of Cartesian to Cylindrical system

The Cartesian co-ordinate system x, y, z can be converted into cylindrical co-ordinates system. (ρ , φ , z)

Given	Transform
x	$\rho = \sqrt{x^2 + y^2}$
у	$\varphi = \tan^{-1}\left(\frac{y}{x}\right)$
Z	z = z

(ii) Conversion of Cylindrical to Cartesian system

The cylindrical co-ordinates system. (ρ, φ, z) can be converted into Cartesian co-ordinate system x, y, z

Given	Transform
ρ	$x = \rho \cos \varphi$
φ ENGI	$NEE_{R} y = \rho \sin \varphi$
Z	$\mathbf{z} = \mathbf{z}$

(B) Transformation between Cartesian and Spherical systems

A vector in Cartesian co-ordinate system can be converted into spherical co-ordinates system.

(i) Conversion of Cartesian to Spherical system

The Cartesian co-ordinate system x, y, z can be converted into cylindrical co-ordinates system. (r, θ, φ)

Given	Transform
x) _{BSERVE}	$r = \sqrt{x^2 + y^2 + z^2}$
у	$\theta = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$
	$=\cos^{-1}\left(\frac{z}{r}\right)$
Z	$\varphi = \tan^{-1}\left(\frac{y}{x}\right)$

(ii) Conversion of Spherical to Cartesian co-ordinate system

The Cartesian co-ordinate system x, y, z can be converted into cylindrical co-ordinates system. (r, θ, φ)

Given	Transform
r	$x = r \sin \theta \cos \varphi$
θ = NG	$y = r \sin \theta \sin \varphi$
$\boldsymbol{\varphi}$	$z = r \cos \theta$