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                                                               UNIT-V 

                                 APPLIED QUANTUM PHYSICS 

 

INTRODUCTION 

 In this chapter Schrodinger's time independent wave equation can be applied to a 

system and then solved to find the energy and wave function of the system under 

given conditions. 

 We also aim at learning characteristic properties of solutions of this equation and 

comparing the predictions of quantum mechanics with those of Newtonian 

mechanics. 

 As simple applications of Schrodinger's time independent wave equation, here we 

shall discuss the problem of Harmonic oscillator, Barrier penetration and 

Quantum tunneling, Finite potential wells. 

5.1. HARMONIC OSCILLATOR. 

Definition 

        A particle undergoing simple harmonic motion is called a harmonic oscillator. In 

harmonic oscillator, the force applied is directly proportional to the displacement and is 

always directed towards the mean position. 

 

 

                                        Fig. 5.1 Harmonic Oscillator 

Examples.  

          a simple pendulum, an object floating in a liquid, a diatomic molecule and an 

atom in a crystal lattice. 
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If applied force moves the particle through ݔ, then restoring force ܨ is given by 

ܨ                                                               ∝ ݔ−
ܨ = ݔ݇− − − −− −− −−(1) 

The potential energy of the oscillator is 

ܸ = −න 	 ݔ݀ܨ

ܸ = ݇ න 	 ݔ݀ݔ =
1
2
ଶݔ݇

ܸ =
1
2
ଶݔ݇ −− −− − −− −− (2)

 

where ݇ is force constant. 

In harmonic oscillator, angular frequency is given by 

                                                          ω = ට


 

 

Squaring on both sides 

߱ଶ = ቌඨ
݇
݉
ቍ

ଶ

߱ଶ =
݇
݉

, 	݇ = ݉߱ଶ

 

where ݉ - mass of the particle 

                              Substituting ݇ in eqn (1), we have 

                                                          ܸ = ଵ
ଶ
݉߱ଶݔଶ 	− − − − −− −−(3) 

Wave equations for the oscillator: 

                   The time - independent Schrodinger wave equation for linear motion of a 

particle along the ݔ-axis is: 
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																																ௗ
మట
ௗ௫మ

+ ଶ
ℏమ

ܧ) − ܸ)߰ = 0−−−−−−(4)  

                    where 	ܧ - Total energy of the particle, 

                                 ܸ - Potential energy and 

																																		Ψ - Wave-function for the particle which is function of ݔ alone. 

 

Substituting for ܸ in equation (4) we get, 

݀ଶ߰
ଶݔ݀

+
2݉
ℏଶ

൬ܧ −
1
2
݉߱ଶݔଶ൰߰ 	= 0 −− −− −− − (5)

݀ଶ߰
ଶݔ݀

+
ܧ2݉
ℏଶ

−
2݉
ℏଶ

×
1
2
݉߱ଶݔଶ߰ 	= 0

 or 
݀ଶ߰
ଶݔ݀

+ ቆ
ܧ2݉
ℏଶ

−
݉ଶ߱ଶ

ℏଶ
ଶቇ߰ݔ 	= 0 −− −− −− − −(6)

 

                            This is Schrodinger wave equation for the oscillator. 

Simplification of the wave equation 

                    To simplify eqn. (6), a dimensionless independent variable ݕ is introduced. 

It is related to ݔ by the equation 

ݕ																																	 = ݔܽ − − − −− −− − −− − (7) 

∴ ݔ	 =
ݕ
ܽ

, 	 where ܽ = ට
݉߱
ℏ

 

Now we have 

݀߰
ݔ݀

=
݀߰
ݕ݀

ݕ݀
ݔ݀

=
݀߰
ݕ݀

ܽ 				

ݕ = ݔܽ
ݕ݀ = ݔ݀ܽ
ݕ݀
ݔ݀

= ܽ
 

 

Differentiating 
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݀ଶ߰
ଶݔ݀

=
݀ଶ߰
ଶݕ݀

݀ଶݕ
ଶݔ݀

 

 														and																						 

݀ଶ߰
ଶݔ݀

	=
݀ଶ߰
ଶݕ݀

ܽଶ

݀ଶ߰
ଶݔ݀

	= ܽଶ
݀ଶ߰
ଶݕ݀

− −− −− −− −− −(8) 	 																	
݀ଶݕ
ଶݔ݀

= ܽଶ
 

Substituting for ௗ
మట
ௗ௫మ

 and ݔଶ in eqn (6), we have 

ܽଶ
݀ଶ߰
ଶݕ݀

+ ቆ
ܧ2݉
ℏଶ

− ܽସ
ଶݕ

ܽଶ
ቇ߰ = 0 												[∵ଶ) =

ݕ
ܽ

ܽଶ
݀ଶ߰
ଶݕ݀

+ ൬
ܧ2݉
ℏଶ

− ܽଶݕଶ൰߰ = 0 																						ܽ = ට
݉߱
ℏଶ

 Dividing through out by ܽଶ, we have 																		ܽ	ଶ =
݉߱
ℏଶ

				݀ଶ߰
ଶݕ݀	

+ ൬
ܧ2݉
ܽଶℏଶ

− ଶ൰߰ݕ = 0 −− −− − −− −− (9) 													ܽଶ =
݉ଶ߱ଶ

ℏଶ

																	ܽସ =
݉ଶ߱ଶ

ℏଶ


 

Substituting for ܽଶ. 

݀ଶ߰
ଶݕ݀

+ ൭
ܧ2݉

ఠ
ℏ
⋅ ℏଶ

− ଶ൱߰ݕ = 0 − − −− −− −−(10)

or											 
݀ଶ߰
ଶݕ݀

+ ߣ) − ߰(ଶݕ = 0 − −− −− −(11)

 or 																	where ߣ =
ܧ2
ℏ߱

 

 

Eigen-values of the total energy ܧ: 

 

              The wave equation for the oscillator is satisfied only for discrete       values of 

total energies given by 
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ܧ2
ℏ߱

	= (2݊ + 1)

 (or)		 ܧ 	=
1
2

(2݊ + 1)ℏ߱

ܧ 	= ൬݊ +
1
2
൰ ℏ߱ − −− − −−(12)

 

Substituting ℏ = 
ଶగ

 and ߱ =  :this expression has the form ,ݒߨ2

ܧ = ൬݊ +
1
2
൰ ℎݒ − − − − −− −−(13) 

where, ݊ = 0,1,2, … …, and ݒ is the frequency of the classical harmonic oscillator, given 

by 

ݒ =
߱
ߨ2

=
1

ߨ2
ඨ݇
݉
	ቌ∵ 	(1) = ඨ݇

݉
ቍ 

 

From eqn. (13), we get the following conclusions: 

1.The lowest energy of the oscillator is obtained by putting ݊ = 0 in equs (12) and (13) 

it is, 

ܧ =
1
2
ℏ߱ =

1
2
ℎv −− − −− −(14) 

This is called the ground state energy or the zero point vibrational energy of the 

harmonic oscillator. The zero-point energy is the characteristic result of quantum 

mechanics. The values of ܧ in terms of ܧ are given by: 

ܧ = (2݊ +  ିିିିିିିିିି(ଵହ)ܧ(1

where ݊ = 0,1,2,3, … 

2. The eigen-values of the total energy depend only on one quantum number ݊. 

Therefore all the energy-levels of the oscillator are non-degenerate. 
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3. The successive energy-levels are equally spaced; the separation between two adjacent 

energy-levels being ℏ߱(ℎݒ). The energy-level diagram for the harmonic oscillator is 

shown in fig. 5.2. 

 

                          Fig. 5.2 Energy levels allowed for a harmonic oscillator.  

 

Wave functions of the harmonic oscillator 

For each value of the parameter ߣ = ଶா
ℏ(ೄ)

= 2݊ + 1, there is a different wave function 

߰ which consists of: 

(i) the normalization constant ܰ given by: 

ܰ = ቀ
݉߱
ℏߨ

ቁ
ଵ/ସ

(2݊!)ିଵ/ଶ 

(ii) the exponential factor ݁ି௬మ/ଶ and 

(iii) a polynomial ܪ(ݕ), called Hermite polynomial in either odd or even powers of ݕ. 

Thus the general formula for the ݊th  wave function is: 

Ψ = ቀ
݉߱
ℏߨ

ቁ
ଵ/ସ

(2݊!)ିଵ/ଶ݁ି௬మ/ଶܪ(ݕ) 
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The first six Hermite polynomials are given in the following table: 

ߣ ݊ = 2݊ +  (࢟)ܪ ࡱ 1

0 1 
1
2
ℏ߱ ܪ(ݕ) = 1 

1 3 
3
2
ℏ߱ ܪଵ(ݕ) =  ݕ2

2 5 5
2
ℏ߱ ܪଶ(ݕ) = ଶݕ4 − 1 

3 7 
7
2
ℏ߱ ܪଷ(ݕ) = ଷݕ8 −  ݕ12

4 9 
9
2
ℏ߱ ܪସ(ݕ) = ସݕ16 − ଶݕ48 + 12 

5 11 
11
2
ℏ߱ H(y) = 32yହ − 160yଷ

+ 120y 

The first six wave functions are shown in fig.  
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                                    Fig. 5.3 Wave functions for Harmonic Oscillator 

Significances of zero point energy 

                               For lowest (ground) state, ݊ = 0 

ܧ																																																																		 =
1
2
ℎݒ 

This is the lowest value of energy, called zero point energy. Even it the temperature 

reduces to absolute zero, the oscillator would still have an amount of energy ଵ
ଶ
ℎݒ. 

                       In old quantum mechanics, the energy of ݊th  level. 

ܧ																																																																			 = ݊ℎݒ 

 

whereas in wave mechanics 

ܧ                                                                  = ቀ݊ + ଵ
ଶ
ቁ ℎݒ 

              A comparison of two results shows that the only difference in old quantum 

mechanics and wave mechanics is that all the equally spaced energy levels are shifted 

upward by an amount equal to half the separation of energy levels 

i.e., ଵ
ଶ
ℎݒ (equal to zero point zero). 

 

 

 

 

 

 

 

 


