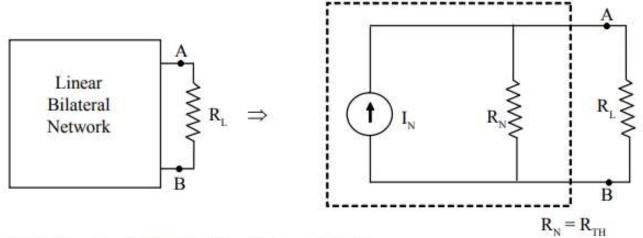

Norton's Theorem



Assistant Professor/ EEE
Rohini College of Engineering and Technology

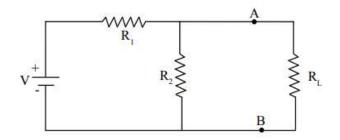
Norton's Theorem

Norton's theorem is the duality of thevenin's theorem.

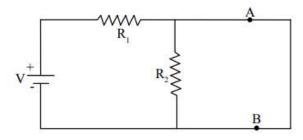
Statement:

"Any two terminal linear bilateral network having active and passive elements can be represented as a practical current source with I_N and R_N . I_N is the current flowing through the short circuit placed between A and B. R_N is same as R_{TH} . i.e., The resistance measured between A and B by reducing the energy sources to zero".

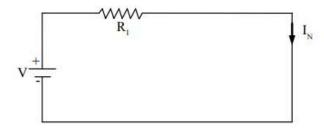
Steps for sovling a network using Norton's Theorem:


- 1. Replace load resistance (R₁) with a shortcircuit.
- Calculate current through the short circuit using loop analysis or ohm's law or current division rule.
- Calculate Norton's resistance looking from A & B.
- 4. Calculate I, using current division rule.

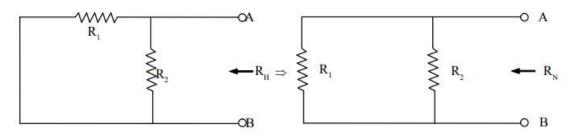
$$I_{L} = I_{N} \frac{R_{N}}{R_{N} + R_{L}}$$



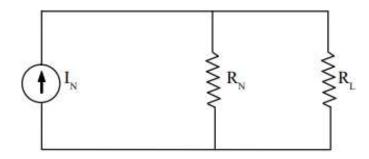
Proof:


Consider the circuit shown below

1. Replace R_L with a short circuit as in below figure


2. Calculate the current I_N.

$$I_{N} = \frac{V}{R_{i}}$$



3. Calculate R_N.

$$\therefore R_{N} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$
 -----(7

4. Calculate I_L

$$I_{L} = I_{N} \frac{R_{N}}{R_{N} + R_{L}} \tag{8}$$

Thank You

