
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

UNION

 Unions are conceptually similar to structures in C

 The Syntax to declare/define a Union is also similar to that of a structure.

 The only differences is in terms of storage.

 In structure each member has its own storage location whereas all member of

union uses a single shared memory location which is equal to the size of its

largest data member.

Structure Union

struct Emp

{

char x;//size 1 byte

float y;//size 4 byte

}e;

struct Exp

{

char x;//size 1 byte

float y;//size 4 byte

}e;

 This implies that although a union may contain many members of different types,

it cannot handle all the members at the same time.

Declaring a Union in C

 A Union is declared using the union keyword in C.

 Other members of Union will share the same memory address.

 To define variables of a Union, we can use Union keyword as follows,

Union item it2, it3;

Accessing a Union member in C.

 We use member access operator(.) to access members of a union in C.

 It is used between the union variable name and the union member that we want to

access.

 Syntax for accessing any union member is similar to accessing structure

members.

Union test

{

int a;

float b;

char c;

}t;

t.a; //to access member of union t

t.b;

t.c;

 In unions, if we change the value of anyone member, the value of other members

gets affected.

Using Union in C program

 Here is a program to understand how compiler decides size of a Union.

 The syntax is as follows

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Union tag_name

{

member definition;

member definition;

………………..

member definition;

}

Union variable(s);

Example:

Union item

{

int m;

float x;

char c;

}It1;

 This declares a variable IT1, of type Union item.

 This union contains three members each with a different datatype.

 However only one of them can be used at a time.

 This is due to the fact only one location is allocated for all the union variable,

irrespective of their size.

 The compiler allocates the storage that is large enough to hold the largest variable

type in the union.

 In the union declared above the member X requires 4 bytes which is largest

amongst the members for a 16 bit machine

Example

#include<stdio.h>

#include<conio.h>

Union one

{

int x;

char y;

}one 1;

Union two

{

int x;

char y;

longz;

}two 2;

Union three

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

{

int arr[100];

char y;

double d[5];

}three 3;

}

int main()

{

printf(“size of (one)=%lu, size of (two)=%lu, size of (three)=%lu,

 size of (one1)=%lu, size of (two 2)=%lu, size of (three 3)=%lu,”);

return 0;

}

Output

Size of (one)=4, Size of (two)=8, Size of(three)=400

Let’s see another code example,

//defining and printing members of a Union

#include<stdio.h>

Union item

{

scanf(“%d”,&n);

for(i=0;i<n;i++)

{

printf(“enter record %d %f %c”, &it[i].a,&it[i].b,&it[i].ch);

}

for(i=0;i<n;i++)

{

printf(“\nrecord no.%d:\n”,i+1);

printf(“%d%f%c”,it[i].a,it[i].b,it[i].ch);

}return0;

}

Output

Enter the number of records : 2

Enter record 1:

1

3

A

Enter record 2:

2

4

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

D

Record No 1:

1082130532

4.000048

D

 As you can see here, the values of int and float get corrupted and only char

variable prints the expected result. This is because in Union, the memory is shared

among different data types.

 In the above example, value of the char variable was stored at last, hence the

value of other variables is last.

Difference Between Structure ad Union in C

Structure Union

In a structure we can initialize many

data members at once.

In union, we can only initialize the first

data member

Compiler allocates memory for each

member of a structure.

While for a union, t allocates memory

equal to the size f the largest data

member.

Structure members have a unique

storage location each

Union members share a memory

location

In a structure we can access individual

members simultaneously

In union, we can only access one

member at a time.

If we change the value of a member in

a structure, it won’t affect its other

members.

In a Union, changing the value of one

member will affect the others.

