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2.4 Sampling frequency for reduced energy consumption  

 

Reducing energy consumption in wearable devices while maintaining functionality 

often involves optimizing the sampling frequency of sensors.  

2.4.1 Some key considerations for optimal sampling frequency: 

1. Adaptive Sampling: 

Instead of using a constant high-frequency sampling rate, adapt it based on user 

activity: 

 Event-driven sampling: Increase sampling only when significant movement or 

changes are detected. 

 Context-aware sampling: Lower frequency during low-activity periods (e.g., 

sleep mode). 

 Hierarchical sampling: Use a low-power sensor (e.g., accelerometer) to 

trigger high-power sensors (e.g., ECG, gyroscope) when needed. 

2. Optimal Sampling Rates for Different Sensors 

Typical sampling rates (which can be reduced for power savings): 

 Accelerometer: 10–50 Hz (high-motion activities) → Can drop to <10 Hz for 

idle states. 
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 Gyroscope: 20–100 Hz → Reduce in low-motion scenarios. 

 Heart Rate (PPG/ECG): 10–500 Hz → Reduce during rest, increase during 

exercise. 

 Temperature: 0.1–1 Hz → Can be sampled even less frequently. 

 Environmental sensors: ~1 Hz or lower, depending on need. 

3. Duty Cycling & Data Fusion 

 Duty cycling: Turn sensors on/off periodically rather than continuous 

operation. 

 Data fusion: Combine low-power sensors to estimate states and reduce 

reliance on power-hungry sensors. 

4. Edge Processing & Compression 

 Perform basic data processing locally to reduce transmission energy costs. 

 Use efficient compression algorithms to reduce data size before transmission. 

2.4.2 Optimal Sampling Frequencies: 

Wearable devices, particularly those used for health monitoring, require careful 

consideration of sampling frequency to optimize both performance and energy 

consumption. The sampling frequency determines how often data is collected from 

sensors, directly impacting battery life and data management needs. 

Heart Rate Monitoring: 

Research indicates that the optimal sampling rate for wrist-worn optical 

sensors, which are commonly used for heart rate (HR) and heart rate variability (HRV) 

monitoring, ranges from 21 Hz to 64 Hz. Specifically, a rate of 64 Hz is recommended 

for comprehensive HR and HRV metrics, while rates as low as 32 Hz can maintain 

sufficient accuracy for many applications, reducing data storage needs by half1. For 

less precision-sensitive applications, a sampling rate of 21 Hz may be acceptable1. 

Energy-Efficient Human Activity Recognition: 

In the context of human activity recognition, a lower sampling frequency can 

significantly reduce energy consumption. However, this reduction must be balanced 
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against the potential loss of accuracy in recognizing activities. A careful analysis is 

needed to determine the lowest effective sampling rate that still meets accuracy 

requirements. 

General Recommendations: 

A common guideline across various studies emphasizes that while high 

sampling rates may enhance signal quality, they also lead to increased power 

consumption. Therefore, it is advisable to adopt the lowest possible sampling 

frequency that still fulfills the application's requirements. This approach not only 

conserves battery life but also minimizes data management challenges. 

Trade-offs in Sampling Frequency 

Battery Life vs. Data Quality: Higher sampling frequencies can lead to quicker 

battery depletion, necessitating more frequent charging or larger batteries that may 

compromise device portability. 

Data Storage Requirements: Lowering the sampling rate can significantly decrease 

the volume of data generated, which is crucial for devices that continuously monitor 

health metrics. 

2.4.3. General guide for various sensors commonly used in wearables: 

1. Motion Sensors (Accelerometer, Gyroscope, Magnetometer) 

Sensor Type Activity Level 
Recommended 

Sampling Frequency 

Accelerometer Low-motion (sleep, rest) 1–10 Hz 

 Walking, daily activity 10–50 Hz 

 High-motion (sports, falls) 50–200 Hz 

Gyroscope Low-motion 10–20 Hz 

 High-motion (sports, VR) 50–200 Hz 

Magnetometer Orientation tracking 10–50 Hz 
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� Power-saving tip: Use an accelerometer to detect motion and activate the 

gyroscope only when needed. 

 

2. Physiological Sensors (Heart Rate, ECG, PPG, SpO₂, EEG, EMG) 

Sensor Type Use Case 
Recommended 

Sampling 
Frequency 

Heart Rate (PPG/ECG) Resting HR 10–25 Hz 

 Exercise monitoring 100–500 Hz 

SpO₂ (Oxygen Saturation) Continuous monitoring 1–10 Hz 

EEG (Brain Activity) Sleep monitoring 100–250 Hz 

EMG (Muscle Activity) Gesture detection 500–2,000 Hz 

� Power-saving tip: Use lower sampling rates during rest and increase during 

activity. 

 

3. Environmental Sensors (Temperature, Humidity, Gas, Pressure) 

Sensor Type Use Case 
Recommended 

Sampling Frequency 

Temperature Skin/body monitoring 0.1–1 Hz 

Humidity Comfort monitoring 0.1–1 Hz 

Barometer (Pressure) Altitude tracking 1–10 Hz 

� Power-saving tip: These sensors can sample at low frequencies since changes 

occur slowly. 
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4. Audio & Communication Sensors (Microphone, Bluetooth, GPS) 

Sensor Type Use Case 
Recommended 

Sampling Frequency 

Microphone Voice detection 8–16 kHz 

 Speech processing 16–44.1 kHz 

Bluetooth Data transmission Event-driven 

GPS Location tracking 
0.1–1 Hz (1 reading 

every few sec/min) 

� Power-saving tip: Use event-driven GPS updates instead of continuous 

tracking. 

 

2.4.4. Strategies to Optimize Power Consumption 

1. Adaptive Sampling: Lower frequency when motion is low. 
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Fig (a) Motor Unit Action Potential (MUAP) 

 Description: This plot shows the MUAP signal in terms of voltage (mV) vs. 
time (s). 

 Key Observations: 
o The signal starts at a relatively low voltage. 
o It then exhibits a significant peak followed by a sharp drop. 
o This pattern is typical of MUAP, which represents the electrical activity 

of motor units in response to neural stimulation. 
o The fluctuations suggest muscle activation and relaxation phases. 

Fig. (b) Uniformly Sampled MUAP 

 Description: This plot represents ADC (Analog-to-Digital Converter) values 
vs. samples, where the signal is sampled at a fixed rate. 

 Key Observations: 
o The sampling rate remains constant throughout the signal. 
o During low-amplitude regions (flat parts), many redundant samples are 

collected. 
o During high-amplitude or rapid transition regions, the sampling may not 

be efficient enough to capture the full details. 
o A red threshold line is present, indicating a criterion for important signal 

variations. 

Analysis: 

 Disadvantages: 
o Inefficient use of sampling points, as too many samples are taken in less 

informative regions. 
o High data redundancy in flat regions. 
o Possible risk of missing finer details in regions of rapid change. 

 Advantages: 
o Simple and predictable sampling strategy. 

Fig. (c) Adaptively Sampled MUAP 

 Description: This plot represents ADC values vs. samples, but with adaptive 
sampling, meaning the sampling rate varies based on signal activity. 

 Key Observations: 
o More samples are taken during rapid signal transitions. 
o Fewer samples are used in relatively flat regions, reducing redundancy. 
o The red threshold line again indicates a trigger for denser sampling in 

critical regions. 

Analysis: 

 Advantages: 
o Efficient use of data points—it captures important details while 

reducing unnecessary samples. 
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o Lower data storage and transmission needs compared to uniform 
sampling. 

o Better representation of signal variations, as it prioritizes regions of 
significant change. 

 Disadvantages: 
o More complex implementation compared to uniform sampling. 
o Requires adaptive algorithms for real-time processing. 

2. Event-Triggered Sampling: Only activate high-power sensors when needed. 

3. Duty Cycling: Periodically turn off sensors when data isn't critical. 

4. Edge Processing: Process data locally to minimize wireless transmission. 

****************** 


