

Sunscreen Dispersions for Cosmetics

1. Introduction

Sunscreen dispersions are cosmetic formulations designed to protect the skin from harmful ultraviolet (UV) radiation emitted by the sun. They are composed of **UV filters (active ingredients)** dispersed in a suitable **base or vehicle** that ensures even application, stability, and aesthetic appeal. Sunscreens are vital in preventing **sunburn, premature aging, and skin cancers**.

2. Need for Sunscreens

- **Protection against UV radiation:**
 - **UVA (320–400 nm):** Causes premature aging, DNA damage.
 - **UVB (290–320 nm):** Responsible for sunburn, erythema.
 - **UVC (100–290 nm):** Absorbed by the ozone layer, not a concern for skin.
- **Health benefits:** Prevents photodermatoses and photoaging.
- **Cosmetic benefits:** Maintains even skin tone, prevents pigmentation and wrinkles.

3. Types of Sunscreens

Sunscreens are classified based on the type of UV filters:

a. Physical (Inorganic) Sunscreens

- Act by **reflecting and scattering** UV radiation.
- Common agents:
 - **Titanium dioxide (TiO₂)**
 - **Zinc oxide (ZnO)**
- Advantages:
 - Broad-spectrum protection (UVA + UVB)
 - Chemically stable and less irritating
- Limitation: Whitening effect on the skin (now minimized by nanoparticle forms).

b. Chemical (Organic) Sunscreens

- Act by **absorbing** UV radiation and converting it into heat or harmless light.
- Common agents:
 - **Para-aminobenzoic acid (PABA) derivatives**
 - **Oxybenzone**
 - **Octinoxate (Octyl methoxycinnamate)**
 - **Avobenzone**
- Advantages:
 - Easy to formulate and transparent on skin.
- Limitations:

- May cause skin irritation or allergic reactions.
- Some are photounstable (require stabilizers).

4. Concept of Sunscreen Dispersion

A **dispersion** refers to the **uniform distribution of solid UV filters** in a continuous phase (usually oil, water, or silicone). Proper dispersion is crucial for:

- Uniform UV protection.
- Preventing aggregation of particles.
- Enhancing aesthetic feel (non-greasy, smooth texture).
- Improving stability and SPF efficiency.

Types of Dispersions:

1. **Oil-in-water (O/W)** – preferred for light creams and lotions.
2. **Water-in-oil (W/O)** – used for waterproof or long-lasting sunscreens.
3. **Silicone-based dispersions** – offer smooth spreadability and improved UV protection.

5. Formulation Components

Component	Function
Active UV filters	Absorb/reflect UV radiation
Emulsifiers	Stabilize the dispersion (e.g., glyceryl stearate, PEG derivatives)
Emollients	Provide smooth feel (e.g., isopropyl myristate, silicones)
Film-forming agents	Ensure uniform coverage and water resistance
Antioxidants	Prevent degradation of active ingredients (e.g., Vitamin E)
Preservatives and fragrances	Ensure product stability and consumer appeal

6. Key Parameters in Sunscreen Dispersion

- **SPF (Sun Protection Factor):** Indicates protection level against UVB.
- **PA Rating:** Indicates UVA protection (e.g., PA+, PA++, PA+++).
- **Particle Size:** Smaller particles (nano-range) reduce whitening effect.
- **Stability:** Must resist sedimentation, creaming, and phase separation.
- **Photostability:** Ensures long-term efficacy during sunlight exposure.

7. Preparation Methods

1. **High-shear mixing:** Ensures fine dispersion of inorganic particles.

2. **Ultrasonication:** Reduces particle size and enhances homogeneity.
3. **Milling (e.g., bead mill):** For uniform nano-dispersion of TiO₂/ZnO.
4. **Emulsification process:** Combines oil and aqueous phases with surfactants.

8. Evaluation of Sunscreen Dispersions

- **SPF testing (In vitro/In vivo)**
- **Particle size analysis**
- **Viscosity and spreadability tests**
- **pH and thermal stability**
- **Photostability testing (under UV exposure)**

9. Recent Advances

- **Nano-dispersions:** Improve transparency and stability.
- **Microencapsulation of UV filters:** Reduces irritation and increases protection.
- **Hybrid formulations:** Combine physical and chemical filters for broad-spectrum coverage.
- **Water-resistant and sweat-proof formulations:** For sports and outdoor applications.

10. Applications

- Daily skincare creams and lotions
- Foundations and BB creams with SPF
- Lip balms, aftershave lotions, baby products
- Hair sprays and scalp protectors

11. Conclusion

Sunscreen dispersions play a crucial role in modern cosmetic formulations by ensuring effective UV protection, aesthetic appeal, and formulation stability. The combination of advanced dispersion techniques and novel UV filter technologies has led to safer, more efficient, and consumer-friendly sunscreen products.