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SINGULARITIES — RESIDUES - RESIDUE THEOREM
Zeros of an analytic function
If a function f(z) is analytic in a region R, is zero at a point z = z, in

R, then z, is called a zero of f(z2).
Simple zero

If f(z,) = 0and f'(z,) # 0, then z = z, is called a simple zero of f(z) ora
zero of the first order.
Zero of order n

If f(z0) = f'(29) =+ = f"1(z,) = 0and f"(z,) # 0, then z, is called
zero of order.

Problems based on zeros

z%+1

1—z2

Example: 4.27 Find the zeros of f(z) =

Solution:

The zeros of f(z)are given by f(z) =0

. _z2+1 (z+D)(z-0)
(i.e.)f(z) = T T 0
=>z+i)(z—-0)=0
= z = i and - i are simple zero.

Example: 4.28 Find the zeros of f(z) = sinﬁ

Solution:
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The zeros are given by f(z) =0

. 1
(l.e.)sm;— 0

= L nr,n=+1,+2,...
Z—Qa

=>(z—-anm=1

. The zerosare z = a +$,n =+1,%£2,,

Example: 4.29 Find the zeros of f(z) = 2222

73

Solution:

The zeros are given by f(z) =0

(e) =0

73
54 ]
31 s5l°
=3 S —Z =0
z
A
3! sl _
> =0
1 z2
——+Z..=0
3! 5!
. Sinz-z 1
But lim =——+0
zZ—-0 z3 3!

=~ f(z) has no zeros.

Example: 4.30 Find the zeros of f(z) = 1_i22

Z

Solution:

The zeros are given by f(z) =0
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1—62Z

(i.e.) =0

o
>1-e%=0
= p2Z — p2inm
(i.e.)2z = 2inm
>z=int,n=0+1; +2 ..
Singular points
A point z = z, at which a function f(z) fails to be analytic is called a
singular point or singularity of f(z).
Example: Consider f(z) = ﬁ

Here, z = 5, is a singular point of f(2)
Types of singularity
A point z = z, is-said to be isolated singularity of f(z) if
(i) f(2) is not analytic at z = z,
(if) There exists a neighbourhood of z = z; containing no other

singularity

Example: f(z) = —

z2-1
This function is analytic everywhere exceptat z = 1, —1

~ z = 1,—1 are two isolated singular points.
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When z = z, is an isolated singular point of f(z), it can expand f(z) as a

Laurent’s series about z = z
Thus
f(2) = Xn=0an(z — o)™ + Y=o bn(z — 2)™
Note: If z = z, is an isolated singular point of a function f(z), then the singularity
is called
(i) a removable singularity (or)
(i) a pole (or)
(iii) an essential singularity
According as the Laurent’s series about z = z, 0f f (z) has
(i) no negative powers (or)
(i) a finite number of negative powers (or)
(iii) an infinite number of negative powers
Removable singularity
If the principal part of f(z) in Laurent’s series expansion contains no term
(i.e.)b,, = 0 for all n, then the singularity z = z, is known as the removable
singularity of f(z)
 f(2) = Lnzo an(z—2,)"
(OR)
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A singular point z = z, is called a removable singularity of f(2), if lim f(z)
Z—Z

ezists finitely

sinz

Example: f(z) =

V4

There is no negative powers of z.
~ z = 0 is a removable singularity of f(z).
Poles

If we can find the positive integer n such that lim (z — zy)™ f(z) # 0, then z = z,
Z—Z

is called a pole of order n for f(z).

(or)
If lim f(z) = oo,then z = z, is a pole of f(z)
Simple pole

A pole of order one is called a simple pole.

__r
(z—1)2(z+2)

Example: f(z) =

Here z = 1 is a pole of order 2
z = 2 isapole of order 1.

Essential singularity
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If the principal part of f(z) in Laurent’s series expansion contains an infinite

number of non zero terms, then z = z, is known as an essential singularity.

1 1)2
Example: f(z) = e'/? =1+ % + % + .- has z = 0 as an essential singularity

since, f(z) is an infinite series of negative powers of z.
1
f(2) = ez * has z = 4 an essential singularity

Note: The removable singularity and the poles are isolated singularities. But, the
essential singularity is either an isolated or non-isolated singularity.
Entire function (or) Integral function

A function f(z) which is analytic everywhere in the finite plane (except at
infinity) is called an entire function or an integral function.
Example: e?, sin z, cos z are all entire functions.
Problems Based on Singularities

Example: 4.31 What is the nature of the singularity z = 0 of the function

f(Z) _ sinz—z

VA

Solution:

sinz—z

Given f(z) = =

The function f(z)is not defined at z = 0

By L’ Hospital’s rule.
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. Sinz-z . cosz—1
li =i >
z-0 Z z—0 3z
. —Sinz
= lim
z—0 6z
— i cosz -1
z—-0 6z 6

Since, the limit exists and is finite, the singularity at z = 0 is a removable

singularity.

zZ—sinz

Example: 4.32 Classify the singularities for the functionf(z) =

z

Solution:

Z—sinz

Given f(z) =

z

The function f(z)is not definedat z = 0

But by L’ Hospital’s rule.

zZ—Ssinz

lim =liml—cosz =1-1=0
z—0 Z z—0

Since, the limit exists and-is finite, the singularity at z = 0 is a removable

singularity.

1/,
Example: 4.33 Find the singularity off(z) = (Ze_—

a)?
Solution:

ez

(z—a)?

Given f(z) =

Poles of f(z) are obtained by equating the denominator to zero.
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(i.e)(z—a)*=0
= z = a is apole of order 2.

Now, Zeros of f(z)

y
) ez o0
Ime—e=a=>°*0

= z = 0is a removable singularity.

~ f(z) has no zeros.

Example: 4.34 Find the kind of singularity of the function f(z) =

Solution:

cotmtz
(z—a)?

Given f(z) =

COS Ttz

sinnz(z~a)?
Singular points are poles, are given by
= sinnz(z —a)? =0

(i.e.))sinmz=0,(z—a)>=0
nz = nm, wheren =0,+1,+2, ...

(i.e.)z=n
z = a is a pole of order 2
Since z=n,n=0,+1,+2, ...
z = oo is a limit of these poles.

~ z = oo is non- isolated singularity.
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Example: 4.35 Find the singular point of the function f(z) = sinzﬁ. State

nature of singularity.

Solution:

. 1
Given f(z) = sinz—

z = a is the only singular point in the finite plane.

sinz— = — : 4
z—a  z-a 3l(z—a)3  5!Y(z—a)°

z = a is an essential singularity
It is an isolated singularity.
Example: 4.36 Identify the type of singularity of the function f(z) =
sin (ﬁ)
Solution:
z = 1 is the only singular point in the finite plane.
z = 1 is an essential singularity

It is an isolated singularity.
Example: 4.37 Find the singular points of the function f(z) = (%) state
sin—

their nature.
Solution:

f (z)has an infinite number of poles which are given by
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1

. 1
(i,e)z—a= —;z=a+
nm nm
But z = a is also a singular point.
It is an essential singularity.

It is a limit point of the poles.

So, It is an non - isolated singularity.

Example: 4.38 Classify the singularity of f(z) = taz"Z.
Solution:
Given f(z) = =2
_ z+§+%+
o zZ
2 4
= el UK
3 15
Im2Z =1 #0
z-0 Z
= z = 0is a removable singularity of f(z).
Example: 4.39 Find the residue of I;fz atz=0
Solution:
2z (22)2 (223 (22)*
] 1—eZ I-[1+ S+ + 5+t
Given f(Z) — Z:’ — [ 1 2 — 3 4 ]

2 4z  8z2 1673
-5+ + = +
1020 3l 4!

74
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Here, z = 0 is a pole of order 3

[Res f(2),z = 0] = 21im 2 [(2)*f (2)]

2 z—0 dz?2

=—11m—[ [2 +2z+ 2 + 2y ]]

= ;Bi%z[ [2+ 32+ 5+ ]]
= Slim [~ 3+ T2+ )]

_1(—8)_—4
~ 2\3/) 3

Example: 4.40 Find the residue of f (z) = tanz at z = g

Solution:
TC .
[Res f(z),z = 5] . Ll_)nl (z — E) tanz
= lim [ ]form
NI cotz
2
. 1 , .
= £1—> n—— —1[By L'Hospital rule]
2
Residue

The residue of f(z) at z = z, is the coefficient of in the Laurent series

Zo

of f(z) about z = z,
Evaluation of Residues
(i) If z = z, is a pole of order one (simple pole) for f(z), then
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[Res f(2),z = z,] = lim (z — z) f(2).
Z—Zg
(ii) If z = z, is a pole of order n for f(z), then

) 1 dTL—l
[Res f(2),z = 2] = leglo (n-1)! dzn1

(z—2z0)" f(2)

Problems based on Residues

eZz

Example: 4.41 Calculate the residue of f(z) = 12 at its pole.
Solution:
: eZZ -
Given f(z) = T Here, z = —1 is a pole of order 2.
We know that,
e e

[Res f(2),z = 2ol = lim (z —20)™ f(2)

z—2zo (Mm=—1)! dzm-1

Here, m = 2
) _ i 2 eZZ
[Res f(2),z=—1] = 11m1 o (z+1) I
— lim L2z — 1 221 — 9 ,-2
= le)rzll — [e<Z] Zlirzl1 2[e“?] =2e

Example: 4.42 Find the residues at z = 0 of the function (i) f(z) = ez

(i) f(2) = 2
(iii) f(2) = zcos>

Solution:
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The residues are the coefficients of i in the Laurent’s expansions of

f(z)aboutz =0

8l

2!
=1+5()+ 50) +56) +-

[Res f(z),0 ] = coefficient of i in Laurent’s expansion.

()e’z=1+ %+ 4o

[Res f(2),0] = % = 1by definition of residue.

[Res f(z),0 ]| = coefficient of i in Laurent’s expansion.

[Res f(2),0] =— % = — Glby definition of residue.

(iii) f(2) = zcos=z [1= 2=+ == |

21 z2 4] z4

11 11

= g l=lilio e

2! z 4! z3

[Res f(z),0 ] = coefficient of iin Laurent’s expansion.

[Res f(2),0] = — - = -

[\)Ip_\

Example: 4.43 Find the residue of z%sin G) atz=0

Solution:

Let £(z) = z2sin(2) = 22 [(1_)_%+] ESIE
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[Res f(z),0 ] = coefficient of iin Laurent’s expansion.

[N N

Example: 4.44 Find the residue of the function f(z) = at a simple pole.

4
z3(z-2)
Solution:

Here, z = 2 is a simple pole.

. 4
[Res f(z),z=2] = Ll_r)rzl(z —2) ey
. 1
A

=0

Solution:

@? @3, @*
= 3 ]

z
-z 1_[1_E+

Given f(2) = 1_;3 =

Here, z = 0 is a pole of order 2.

[Res f(2),z=0] = —llm ~[(2)?*f(2)]

=Ll£%—z[[1——+—'—z+ ]]
=11m—'+2—z——+ ]
z—0

MA3303 PROBABILITY AND COMPLEX FUNCTIONS



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MA3303 PROBABILITY AND COMPLEX FUNCTIONS



