SINGULARITIES - RESIDUES - RESIDUE THEOREM

Zeros of an analytic function

If a function $f(z)$ is analytic in a region R , is zero at a point $z=z_{0}$ in R , then z_{0} is called a zero of $f(z)$.

Simple zero

If $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right) \neq 0$, then $z=z_{0}$ is called a simple zero of $f(z)$ or a zero of the first order.

Zero of order n

If $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{n-1}\left(z_{0}\right)=0$ and $f^{n}\left(z_{0}\right) \neq 0$, then z_{0} is called
zero of order.
Problems based on zeros
Example: 4.27 Find the zeros of $f(z)=\frac{z^{2}+1}{1-z^{2}}$
Solution:
OBSERVE OPTLMIZE OUTSPREAD

The zeros of $f(z)$ are given by $f(z)=0$

$$
\text { (i.e.) } \begin{aligned}
f(z) & =\frac{z^{2}+1}{1-z^{2}}=\frac{(z+i)(z-i)}{1-z^{2}}=0 \\
& \Rightarrow(z+i)(z-i)=0 \\
& \Rightarrow z=i \text { and }-i \text { are simple zero. }
\end{aligned}
$$

Example: 4.28 Find the zeros of $f(z)=\sin \frac{1}{z-a}$

Solution:

The zeros are given by $f(z)=0$

$$
\begin{aligned}
& \text { (i.e.) } \sin \frac{1}{z-a}=0 \\
& \Rightarrow \frac{1}{z-a}=n \pi, n= \pm 1, \pm 2, \ldots \\
& \Rightarrow(z-a) n \pi=1
\end{aligned}
$$

\therefore The zeros are $z=a+\frac{1}{n \pi}, n= \pm 1, \pm 2$, ,
Example: 4.29 Find the zeros of $f(z)=\frac{\sin z-z}{z^{3}} / 1$

Solution:

The zeros are given by $f(z)=0$

$$
\text { (i.e.) } \frac{\sin z-z}{z^{3}}=0
$$

$$
\Rightarrow \frac{\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!} \cdots\right]}{z^{3}}-z=0
$$

$$
\Rightarrow \frac{-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}}{z^{3}} \ldots=0
$$

$$
\Rightarrow-\frac{1}{3!}+\frac{z^{2}}{5!} \ldots=0
$$

But $\lim _{z \rightarrow 0} \frac{\sin z-z}{z^{3}}=-\frac{1}{3!}+0$
$\therefore f(z)$ has no zeros.
Example: 4.30 Find the zeros of $f(z)=\frac{1-e^{2 z}}{z^{4}}$

Solution:

The zeros are given by $f(z)=0$

$$
\begin{gathered}
\text { (i.e.) } \frac{1-e^{2 z}}{z^{4}}=0 \\
\Rightarrow 1-e^{2 z}=0 \\
\Rightarrow e^{2 z}=e^{2 i n \pi} \\
\text { (i.e.) } 2 z=2 i n \pi \\
\Rightarrow z=i n \pi, n=0, \pm 1 ; \pm 2 \ldots
\end{gathered}
$$

Singular points

A point $z=z_{0}$ at which a function $f(z)$ fails to be analytic is called a singular point or singularity of $f(z)$.

Example: Consider $f(z)=\frac{1}{z-5}$
Here, $z=5$, is a singular point of $f(z)$

Types of singularity

A point $z=z_{0}$ is said to be isolated singularity of $f(z)$ if
(i) $f(z)$ is not analytic at $z=z_{0}$ prea
(ii) There exists a neighbourhood of $z=z_{0}$ containing no other singularity

Example: $f(z)=\frac{z}{z^{2}-1}$
This function is analytic everywhere except at $z=1,-1$
$\therefore z=1,-1$ are two isolated singular points.

When $z=z_{0}$ is an isolated singular point of $f(z)$, it can expand $f(z)$ as a
Laurent's series about $z=z_{0}$
Thus

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

Note: If $z=z_{0}$ is an isolated singular point of a function $f(z)$, then the singularity is called
(i) a removable singularity (or)
(ii) a pole (or)
(iii) an essential singularity

According as the Laurent's series about $z=z_{0}$ of $f(z)$ has
(i) no negative powers (or)
(ii) a finite number of negative powers (or)
(iii) an infinite number of negative powers

Removable singularity

OBSEMVE OPTMTRI OUTSPREAD
If the principal part of $f(z)$ in Laurent's series expansion contains no term
(i.e.) $b_{n}=0$ for all n , then the singularity $z=z_{0}$ is known as the removable singularity of $f(z)$

$$
\begin{gathered}
\therefore f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{o}\right)^{n} \\
(\mathrm{OR})
\end{gathered}
$$

A singular point $z=z_{0}$ is called a removable singularity of $f(z)$, if $\lim _{z \rightarrow z_{0}} f(z)$ ezists finitely

Example: $f(z)=\frac{\sin z}{z}$

$$
\begin{aligned}
\frac{\sin z}{z} & =\frac{1}{z}\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!} \ldots\right] \\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}
\end{aligned}
$$

There is no negative powers of z. NGINERRM/
$\therefore z=0$ is a removable singularity of $f(z)$.
Poles
If we can find the positive integer n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z) \neq 0$, then $z=z_{0}$ is called a pole of order n for $f(z)$.

> (or)

If $\lim _{z \rightarrow z_{0}} f(z)=\infty$, then $z=z_{0}$ is a pole of $f(z)$

Simple pole

A pole of order one is called a simple pole.
Example: $f(z)=\frac{1}{(z-1)^{2}(z+2)}$
Here $z=1$ is a pole of order 2
$z=2$ is a pole of order 1.

Essential singularity

If the principal part of $f(z)$ in Laurent's series expansion contains an infinite number of non zero terms, then $z=z_{0}$ is known as an essential singularity.

Example: $f(z)=e^{1 / z}=1+\frac{\frac{1}{z}}{1!}+\frac{\left(\frac{1}{z}\right)^{2}}{2!}+\cdots$ has $z=0$ as an essential singularity since, $f(z)$ is an infinite series of negative powers of z.
$f(z)=e^{\frac{1}{2}-4}$ has $z=4$ an essential singularity

Note: The removable singularity and the poles are isolated singularities. But, the essential singularity is either an isolated or non-isolated singularity.

Entire function (or) Integral function

A function $f(z)$ which is analytic everywhere in the finite plane (except at infinity) is called an entire function or an integral function.

Example: $e^{z}, \sin z, \cos z$ are all entire functions.

Problems Based on Singularities

Example: 4.31 What is the nature of the singularity $z=0$ of the function

$f(z)=\frac{\sin z-z}{z^{3}}$

Solution:

Given $f(z)=\frac{\sin z-z}{z^{3}}$
The function $f(z)$ is not defined at $z=0$
By L' Hospital's rule.

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{\sin z-z}{z^{3}}= & \lim _{z \rightarrow 0} \frac{\cos z-1}{3 z^{2}} \\
& =\lim _{z \rightarrow 0} \frac{-\sin z}{6 z} \\
& =\lim _{z \rightarrow 0}-\frac{\cos z}{6 z}=\frac{-1}{6}
\end{aligned}
$$

Since, the limit exists and is finite, the singularity at $z=0$ is a removable singularity.

Example: 4.32 Classify the singularities for the function $f(z)=\frac{z-\sin z}{z}$

Solution:

$$
\text { Given } f(z)=\frac{z-\sin z}{z}
$$

The function $f(z)$ is not defined at $z=0$
But by L' Hospital's rule.

$$
\lim _{z \rightarrow 0} \frac{z-\sin z}{z}=\lim _{z \rightarrow 0} 1-\cos z=1-1=0
$$

Since, the limit exists and is finite, the singularity at $z=0$ is a removable singularity.

Example: 4.33 Find the singularity of $f(z)=\frac{e^{1 / z}}{(z-a)^{2}}$

Solution:

Given $f(z)=\frac{e^{1 / z}}{(z-a)^{2}}$
Poles of $f(z)$ are obtained by equating the denominator to zero.

$$
(\text { i.e. })(z-a)^{2}=0
$$

$\Rightarrow z=a$ is a pole of order 2.
Now, Zeros of $f(z)$

$$
\lim _{z \rightarrow 0} \frac{e^{1 / z}}{(z-a)^{2}}=\frac{\infty}{a^{2}}=\infty \neq 0
$$

$\Rightarrow z=0$ is a removable singularity.
$\therefore f(z)$ has no zeros.

Example: 4.34 Find the kind of singularity of the function $f(z)=\frac{\operatorname{cotmz}}{(z-a)^{2}}$

Solution:

Given $f(z)=\frac{\cot \pi z}{(z-a)^{2}}$

$$
=\frac{\cos \pi z}{\sin \pi z(z-a)^{2}}
$$

Singular points are poles, are given by

$$
\begin{gathered}
\Rightarrow \sin \pi z(z-a)^{2}=0 \\
\text { (i.e.) } \sin \pi z=0,(z-a)^{2}=0
\end{gathered}
$$

$\pi z=n \pi$, where $n=0, \pm 1, \pm 2, \ldots$

$$
\text { (i.e.) } z=n
$$

$z=a$ is a pole of order 2
Since $z=n, n=0, \pm 1, \pm 2, \ldots$
$z=\infty$ is a limit of these poles.
$\therefore z=\infty$ is non- isolated singularity.

Example: 4.35 Find the singular point of the function $f(z)=\sin z \frac{1}{z-a}$. State nature of singularity.

Solution:

Given $f(z)=\sin z \frac{1}{z-a}$
$z=a$ is the only singular point in the finite plane.

$$
\sin z \frac{1}{z-a}=\frac{1}{z-a}-\frac{1}{3!(z-a)^{3}}+\frac{1}{5!(z-a)^{5}}-\cdots
$$

$z=a$ is an essential singularity
It is an isolated singularity.
Example: 4.36 Identify the type of singularity of the function $f(z)=$ $\sin \left(\frac{1}{1-z}\right)$.

Solution:
$z=1$ is the only singular point in the finite plane.
$z=1$ is an essential singularity
It is an isolated singularity.
Example: 4.37 Find the singular points of the function $f(z)=\left(\frac{1}{\sin \frac{1}{z-a}}\right)$, state
their nature.

Solution:

$$
f(z) \text { has an infinite number of poles which are given by }
$$

$$
\begin{aligned}
& \frac{1}{z-a}=n \pi, n= \pm 1, \pm 2, \ldots \\
& \text { (i.e. }) z-a=\frac{1}{n \pi} ; z=a+\frac{1}{n \pi}
\end{aligned}
$$

But $z=a$ is also a singular point.

It is an essential singularity.

It is a limit point of the poles.
So, It is an non - isolated singularity.
Example: 4.38 Classify the singularity of $f(z)=\frac{\tan z}{z}$.

Solution:

Given $f(z)=\frac{\tan z}{z}$

$$
=\frac{z+\frac{z^{3}}{3}+\frac{2 z^{5}}{15}+\ldots}{z}
$$

$$
=1+\frac{z^{2}}{3}+\frac{2 z^{4}}{15}+\cdots
$$

$$
\lim _{z \rightarrow 0} \frac{\tan z}{z}=1 \neq 0 \text { give opinhras outsprend }
$$

$\Rightarrow z=0$ is a removable singularity of $f(z)$.
Example: 4.39 Find the residue of $\frac{1-e^{z}}{z^{4}}$ at $z=0$

Solution:

$$
\text { Given } \begin{aligned}
f(z)=\frac{1-e^{z}}{z^{4}} & =\frac{1-\left[1+\frac{2 z}{1!}+\frac{(2 z)^{2}}{2!}+\frac{(2 z)^{3}}{3!}+\frac{(2 z)^{4}}{4!}+\ldots\right]}{z^{4}} \\
& =\frac{-\left[\frac{2}{1!}+\frac{4 z}{2!}+\frac{8 z^{2}}{3!}+\frac{16 z^{3}}{4!}+\ldots\right]}{z^{4}}
\end{aligned}
$$

Here, $z=0$ is a pole of order 3

$$
\begin{aligned}
& {[\operatorname{Res} f(z), z=0]=\frac{1}{2!} \lim _{z \rightarrow 0} \frac{d^{2}}{d z^{2}}\left[(z)^{3} f(z)\right]} \\
& \quad=\frac{1}{2} \lim _{z \rightarrow 0} \frac{d^{2}}{d z^{2}}\left[-\left[\frac{2}{1!}+2 z+\frac{4 z^{2}}{3}+\frac{2 z^{3}}{3}+\ldots\right]\right] \\
& \quad=\frac{1}{2} \lim _{z \rightarrow 0} \frac{d}{d z}\left[-\left[2+\frac{8}{3} z+\frac{6 z^{2}}{3}+\ldots\right]\right] \\
& =
\end{aligned}
$$

Example: 4.40 Find the residue of $f(z)=\tan z$ at $z=\frac{\pi}{2}$

Solution:

$$
\begin{aligned}
{\left[\operatorname{Res} f(z), \mathrm{z}=\frac{\pi}{2}\right] } & =\lim _{\mathrm{z} \rightarrow \frac{\pi}{2}}\left(\mathrm{z}-\frac{\pi}{2}\right) \text { tanz } \\
& =\lim _{\mathrm{z} \rightarrow \frac{\pi}{2}} \frac{\mathrm{z}-\frac{\pi}{2}}{\cot \mathrm{z}}-\left[\frac{0}{0}\right] \text { form } \\
& =\lim _{\mathrm{z} \rightarrow \frac{\pi}{2}} \frac{1}{-\operatorname{cosec}^{2} \mathrm{z}}=-1[\text { By L'Hospital rule }]
\end{aligned}
$$

Residue

The residue of $f(z)$ at $z=z_{0}$ is the coefficient of $\frac{1}{z-z_{0}}$ in the Laurent series of $f(z)$ about $z=z_{0}$

Evaluation of Residues

(i) If $z=z_{0}$ is a pole of order one (simple pole) for $f(z)$, then

$$
\left[\operatorname{Res} f(z), z=z_{0}\right]=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

(ii) If $z=z_{0}$ is a pole of order n for $f(z)$, then

$$
\left[\operatorname{Res} f(z), z=z_{0}\right]=\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z)
$$

Problems based on Residues

Example: 4.41 Calculate the residue of $f(z)=\frac{e^{2 z}}{(z+1)^{2}}$ at its pole.
Solution:
Given $f(z)=\frac{e^{2 z}}{(z+1)^{2}}$ Here, $z=-1$ is a pole of order 2.
We know that,

$$
\left[\operatorname{Res} f(z), z=z_{0}\right]=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z)
$$

Here, $m=2$

$$
\begin{aligned}
& {[\text { Res } f(z), z=-1]=\lim _{z \rightarrow-1} \frac{1}{1!} \frac{d}{d z}(z+1)^{2} \frac{e^{2 z}}{(z+1)^{2}}} \\
& =\lim _{z \rightarrow-1} \frac{d}{d z}\left[e^{2 z}\right]=\lim _{z \rightarrow-1} 2\left[e^{2 z}\right]=2 e^{-2}
\end{aligned}
$$

Example: 4.42 Find the residues at $z=0$ of the function (i) $f(z)=e^{1 / z}$
(ii) $f(z)=\frac{\sin z}{z^{4}}$
(iii) $f(z)=z \cos \frac{1}{z}$

Solution:

The residues are the coefficients of $\frac{1}{z}$ in the Laurent's expansions of $f(z)$ about $z=0$
(i) $e^{1 / z}=1+\frac{\left(\frac{1}{z}\right)}{1!}+\frac{\left(\frac{1}{z}\right)^{2}}{2!}+\cdots$

$$
=1+\frac{1}{1!}\left(\frac{1}{z}\right)+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots
$$

[Res $f(z), 0]=$ coefficient of $\frac{1}{z}$ in Laurent's expansion.
$[\operatorname{Res} f(z), 0]=\frac{1}{1!}=1$ by definition of residue.
(ii) $f(z)=\frac{\sin z}{z^{4}}=\frac{1}{z^{4}}\left[z-\frac{z^{3}}{3!}+\frac{\frac{z}{}_{5}^{5}}{5!}-\cdots\right]=\frac{1}{z^{3}}-\frac{1}{3!} \frac{1}{z}+\frac{z^{5}}{5!}-\ldots$
$[\operatorname{Res} f(z), 0]=$ coefficient of $\frac{1}{z}$ in Laurent's expansion.
$[\operatorname{Res} f(z), 0]=-\frac{1}{3!}=-\frac{1}{6}$ by definition of residue.
(iii) $f(z)=z \cos \frac{1}{z}=z\left[1-\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{4!} \frac{1}{z^{4}}-\cdots\right]$

$$
=z-\frac{1}{2!} \frac{1}{z}+\frac{1}{4!} \frac{1}{z^{3}}-\cdots \text { SPREAD }
$$

$[\operatorname{Res} f(z), 0]=$ coefficient of $\frac{1}{z}$ in Laurent's expansion.

$$
[\operatorname{Res} f(z), 0]=-\frac{1}{2!}=-\frac{1}{2}
$$

Example: 4.43 Find the residue of $z^{2} \sin \left(\frac{1}{z}\right)$ at $z=0$

Solution:

$$
\text { Let } f(z)=z^{2} \sin \left(\frac{1}{z}\right)=z^{2}\left[\frac{\left(\frac{1}{z}\right)}{1!}-\frac{\left(\frac{1}{z}\right)^{3}}{3!}+\cdots\right]=\frac{z}{1!}-\frac{1}{6 z}+\cdots
$$

$[$ Res $f(z), 0]=$ coefficient of $\frac{1}{z}$ in Laurent's expansion.

$$
=-\frac{1}{6}
$$

Example: 4.44 Find the residue of the function $f(z)=\frac{4}{z^{3}(z-2)}$ at a simple pole.

Solution:

Here, $z=2$ is a simple pole.

$$
\begin{aligned}
{[\operatorname{Res} f(z), z=2] } & =\lim _{z \rightarrow 2}(z-2) \frac{4}{z^{3}(z-2)} \\
& =\lim _{z \rightarrow 2} \frac{4}{z^{3}}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

Example: 4.45 Find the residue of $\frac{1-e^{-z}}{z^{3}}$ at $z=0$

Solution:

$$
\begin{gathered}
\text { Given } f(z)=\frac{1-e^{-z}}{z^{3}}=\frac{1-\left[1-\frac{z}{1!}+\frac{(z)^{2}}{2!}-\frac{(z)^{3}}{3!}+\frac{(z)^{4}}{4!}-2\right]}{z^{2}} \\
=\frac{\left[1-\frac{z}{2!}+\frac{z^{2}}{3!} \frac{z^{3}}{4!}+\ldots\right]}{z^{2}}
\end{gathered}
$$

Here, $z=0$ is a pole of order 2 .

$$
\begin{aligned}
{[\operatorname{Res} f(z), z=0] } & =\frac{1}{1!} \lim _{z \rightarrow 0} \frac{d}{d z}\left[(z)^{2} f(z)\right] \\
& =\lim _{z \rightarrow 0} \frac{d}{d z}\left[\left[1-\frac{z}{2!}+\frac{z^{2}}{3!}-\frac{z^{3}}{4!}+\ldots\right]\right] \\
& =\lim _{z \rightarrow 0}\left[\frac{-1}{2!}+\frac{2 z}{3!}-\frac{3 z^{2}}{4!}+\ldots\right]
\end{aligned}
$$

$$
=\frac{-1}{2!}=-\frac{1}{2}
$$

