Rohini College of Engineering and Technology

MAPREDUCE WORKFLOWS
Introduction

MapReduce is a programming model used for processing large datasets in a distributed
environment. A *MapReduce workflow* refers to a sequence of MapReduce jobs executed in a
pipeline to accomplish complex data-processing tasks.

Why Workflows?
* Single MapReduce job is often insufficient
* Complex analytics require multiple dependent stages
* Qutput of one job becomes input to another
Components of a MapReduce Workflow
1. Mapper
* Processes input key/value pairs
* Emits intermediate key/value pairs
2. Reducer
* Aggregates values based on intermediate keys
* Produces final output
3. Driver
* Configures and submits jobs
* Controls job flow (job chaining)
4. Intermediate Data
* Stored in HDFS (default)

* Can also be passed directly using **in-memory chaining** (e.g., ChainMapper,
ChainReducer)

Types of MapReduce Workflows

1. Linear Workflows (Sequential Jobs)
*Job 1 — Job2 —Job3

* Most common workflow

* Dependent tasks

Example:

CCS334 & BIG DATA ANALYTICS

Rohini College of Engineering and Technology

Log Parsing — Sessionization — Aggregation
2. Parallel Workflows
* Multiple jobs run simultaneously
* Final merge after all jobs complete
Used for:
* Comparing multiple datasets
* Parallel feature extraction
3. Iterative Workflows
* Repeated MapReduce steps until a condition is satisfied
* MapReduce is not naturally iterative — used in algorithms like:
* PageRank
* K-Means Clustering
Tools Supporting MapReduce Workflows
Oozie — Workflow scheduler
Azkaban — Job orchestration
Apache Airflow — DAG-based pipelines
Job Chaining Techniques
Driver code:
java
Job jobl = Job.getInstance(conf, "Jobl");
jobl.waitForCompletion(true);
Job job2 = Job.getInstance(conf, "Job2");
job2.waitForCompletion(true);
Using ChainMapper and ChainReducer
Efficient method to run multiple mappers and reducers in a single job.
Advantages of MapReduce Workflows
* Scalable

* Fault-tolerant

CCS334 & BIG DATA ANALYTICS

Rohini College of Engineering and Technology

* Supports large and complex pipelines

* Efficient for batch analytics

2. UNIT TESTING MAPREDUCE USING MRUNIT

2.1 Introduction to MRUnit

MRUnit is a unit-testing framework for Hadoop MapReduce programs.

It helps test Mappers, Reducers, and full MapReduce jobs without running on a cluster.

Why MRUnit?

* Fast testing

* No need for Hadoop cluster

* Detect logic errors early

* Ensures correctness

2.2 MRUnit Architecture

Test Drivers Provided by MRUnit

| Component | MRUnit Class |
e R |

Mapper Test	**MapDriver**
Reducer Test	**ReduceDriver**
MapReduce Test	**MapReduceDriver**
2.3 Testing a Mapper with MRUnit**
Steps

1. Create Mapper instance

2. Provide input

3. Define expected output

4. Use "MapDriver to run test

Example
java

@Test

CCS334 & BIG DATA ANALYTICS

Rohini College of Engineering and Technology

public void testMapper() throws I0Exception {
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new WordCount.TokenizerMapper())
.withInput(new LongWritable(1), new Text(*"hello world™))
.withOutput(new Text("hello"), new IntWritable(1))
.withOutput(new Text("world™), new IntWritable(1))
runTest();
}
2.4 Testing a Reducer with MRUnit
Example
java
@Test
public void testReducer() throws IOException {
new ReduceDriver<Text, IntWritable, Text, IntWritable>()
.withReducer(new WordCount.IntSumReducer())
withInput(new Text("hello™), Arrays.asList(new IntWritable(1), new IntWritable(2)))
withOutput(new Text("hello™), new IntWritable(3))
runTest();
}
2.5 Testing Full MapReduce Job
Example
java
@Test
public void testMapReduce() throws IOException {
new MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable>()
.withMapper(new TokenizerMapper())
.withReducer(new IntSumReducer())

.withlnput(new LongWritable(1), new Text("hello hello™))

CCS334 & BIG DATA ANALYTICS

Rohini College of Engineering and Technology

withOutput(new Text("hello™), new IntWritable(2))
.runTest();

2.6 Advantages of MRUnit
* Lightweight
* Isolates logic errors
* No cluster needed
* Reproducible test environment
* Faster development cycle
3. TEST DATA & LOCAL TESTING
3.1 Local Job Runner Mode**
Hadoop has two important modes:
1. Local (Standalone) Mode — runs on a single JVM
2. Pseudo-distributed Mode — simulates cluster on one machine
Local mode is ideal for:
* Debugging
* Unit testing
* Using small datasets
3.2 Test Data Preparation
Types of Test Data
1. Synthetic Data
* Hand-crafted
* Predictable
* Best for unit tests
2. Sample Production Data
* Small subset from real logs

* Caught data-dependent errors

CCS334 & BIG DATA ANALYTICS

Rohini College of Engineering and Technology

3. Edge Case Data
* Empty lines
* Null values
* Strange characters
* Malformed records
3.3 Using Local File System for Testing
Example configuration:
xml
<property>
<name>mapreduce.framework.name</name>
<value>local</value>
</property>
Run MapReduce job locally:
hadoop jar myjar.jar MyDriver input.txt output/
3.4 Debugging Techniques in Local Mode
* Use System.out.printin()
* Log4j logging
* Debugging in IDE
* Step-through debugging
3.5 Benefits of Local Testing
* Very fast
* No need for cluster
* Easier debugging

* Better test coverage

CCS334 & BIG DATA ANALYTICS

