
Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

MAPREDUCE WORKFLOWS

Introduction

MapReduce is a programming model used for processing large datasets in a distributed

environment. A *MapReduce workflow* refers to a sequence of MapReduce jobs executed in a

pipeline to accomplish complex data-processing tasks.

Why Workflows?

* Single MapReduce job is often insufficient

* Complex analytics require multiple dependent stages

* Output of one job becomes input to another

Components of a MapReduce Workflow

1. Mapper

* Processes input key/value pairs

* Emits intermediate key/value pairs

2. Reducer

* Aggregates values based on intermediate keys

* Produces final output

3. Driver

* Configures and submits jobs

* Controls job flow (job chaining)

4. Intermediate Data

* Stored in HDFS (default)

* Can also be passed directly using **in-memory chaining** (e.g., ChainMapper,

ChainReducer)

Types of MapReduce Workflows

1. Linear Workflows (Sequential Jobs)

* Job 1 → Job 2 → Job 3

* Most common workflow

* Dependent tasks

Example:

Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

Log Parsing → Sessionization → Aggregation

2. Parallel Workflows

* Multiple jobs run simultaneously

* Final merge after all jobs complete

Used for:

* Comparing multiple datasets

* Parallel feature extraction

3. Iterative Workflows

* Repeated MapReduce steps until a condition is satisfied

* MapReduce is not naturally iterative → used in algorithms like:

 * PageRank

 * K-Means Clustering

Tools Supporting MapReduce Workflows

Oozie → Workflow scheduler

Azkaban → Job orchestration

Apache Airflow → DAG-based pipelines

Job Chaining Techniques

Driver code:

java

Job job1 = Job.getInstance(conf, "Job1");

job1.waitForCompletion(true);

Job job2 = Job.getInstance(conf, "Job2");

job2.waitForCompletion(true);

Using ChainMapper and ChainReducer

Efficient method to run multiple mappers and reducers in a single job.

Advantages of MapReduce Workflows

* Scalable

* Fault-tolerant

Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

* Supports large and complex pipelines

* Efficient for batch analytics

2. UNIT TESTING MAPREDUCE USING MRUNIT

2.1 Introduction to MRUnit

MRUnit is a unit-testing framework for Hadoop MapReduce programs.

It helps test Mappers, Reducers, and full MapReduce jobs without running on a cluster.

Why MRUnit?

* Fast testing

* No need for Hadoop cluster

* Detect logic errors early

* Ensures correctness

2.2 MRUnit Architecture

Test Drivers Provided by MRUnit

| Component | MRUnit Class |

| -------------- | ------------------- |

| Mapper Test | **MapDriver** |

| Reducer Test | **ReduceDriver** |

| MapReduce Test | **MapReduceDriver** |

2.3 Testing a Mapper with MRUnit**

Steps

1. Create Mapper instance

2. Provide input

3. Define expected output

4. Use `MapDriver` to run test

Example

java

@Test

Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

public void testMapper() throws IOException {

 new MapDriver<LongWritable, Text, Text, IntWritable>()

 .withMapper(new WordCount.TokenizerMapper())

 .withInput(new LongWritable(1), new Text("hello world"))

 .withOutput(new Text("hello"), new IntWritable(1))

 .withOutput(new Text("world"), new IntWritable(1))

 .runTest();

}

2.4 Testing a Reducer with MRUnit

Example

java

@Test

public void testReducer() throws IOException {

 new ReduceDriver<Text, IntWritable, Text, IntWritable>()

 .withReducer(new WordCount.IntSumReducer())

 .withInput(new Text("hello"), Arrays.asList(new IntWritable(1), new IntWritable(2)))

 .withOutput(new Text("hello"), new IntWritable(3))

 .runTest();

}

2.5 Testing Full MapReduce Job

Example

java

@Test

public void testMapReduce() throws IOException {

 new MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable>()

 .withMapper(new TokenizerMapper())

 .withReducer(new IntSumReducer())

 .withInput(new LongWritable(1), new Text("hello hello"))

Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

 .withOutput(new Text("hello"), new IntWritable(2))

 .runTest();

}

2.6 Advantages of MRUnit

* Lightweight

* Isolates logic errors

* No cluster needed

* Reproducible test environment

* Faster development cycle

3. TEST DATA & LOCAL TESTING

3.1 Local Job Runner Mode**

Hadoop has two important modes:

1. Local (Standalone) Mode – runs on a single JVM

2. Pseudo-distributed Mode – simulates cluster on one machine

Local mode is ideal for:

* Debugging

* Unit testing

* Using small datasets

3.2 Test Data Preparation

Types of Test Data

1. Synthetic Data

 * Hand-crafted

 * Predictable

 * Best for unit tests

2. Sample Production Data

 * Small subset from real logs

 * Caught data-dependent errors

Rohini College of Engineering and Technology

 CCS334 & BIG DATA ANALYTICS

3. Edge Case Data

 * Empty lines

 * Null values

 * Strange characters

 * Malformed records

3.3 Using Local File System for Testing

Example configuration:

xml

<property>

 <name>mapreduce.framework.name</name>

 <value>local</value>

</property>

Run MapReduce job locally:

hadoop jar myjar.jar MyDriver input.txt output/

3.4 Debugging Techniques in Local Mode

* Use System.out.println()

* Log4j logging

* Debugging in IDE

* Step-through debugging

3.5 Benefits of Local Testing

* Very fast

* No need for cluster

* Easier debugging

* Better test coverage

