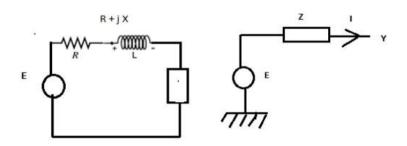
REPRESENTATION

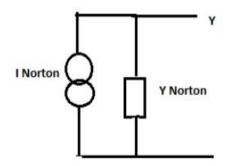
Sl.no	Components	Symbol
1	Rotating M/c(or) armature	Ο
2	Bus	
3	Two winding power Transfomer	
4	Three winding power Transformer	

5	Delta connection (3Φ, 3 wire)	\sum
6	Wye connection (3Φ, neutral un grounded)	Y
7	Wye connection (3Φ, neutral grounded)	Υ <u></u>

8	Transmission lines	
9	Static load	\mapsto
10	Circuit Breaker	
11	Circuit Breaker (air)	
12	Disconnect	
13	Fuse	


14	Capacitor	Ŧ
15	Current transformer	\square
16	Potential transformer	
17	Lighting arrester	

MODELING OF COMPONENTS FOR LOAD FLOW ANALYSIS


Generator model:

Generators

The thevenins equivalent circuit of the generator i.e. The voltage source in series with the thevenins equivalent impedance. Z = R + jX

The Norton form equivalent circuit of the generator i.e. the current source in parallel with the admittance

Transformer model

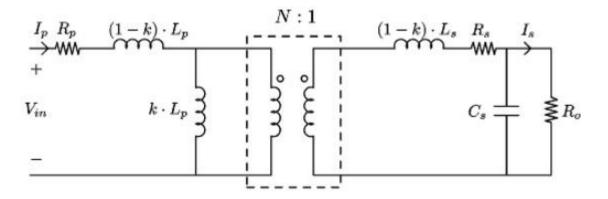
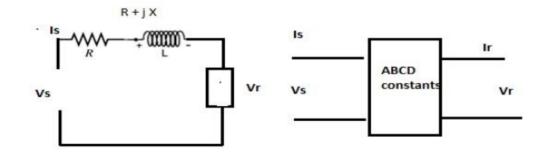
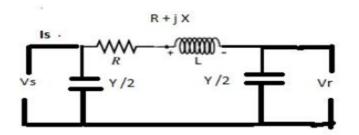


Fig. 5. Simplified model of a transformer.

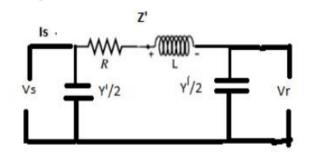

Transmission system model

Transmission Line

Transmission line are modelled as


- (i) Short line model
- (ii) Medium line model
- (iii) Long line model
- (i) Short line model:

Resistance & inductance are assumed to be lumped



(ii) Medium line model (lines between 80 to 250km)

Resistance & inductance are assumed to be lumped & the total shunt admittance is divided in to two equal parts & placed at the receiving and sending ends.

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_r \\ I_r \end{bmatrix}$$

X = L\omega
Y/2 = C\omega/2
A = 1+ZY/2
B=Z
C=Y(1+ZY/4)
D=1+ZY/4

(iii) Long line model (lines above 250)

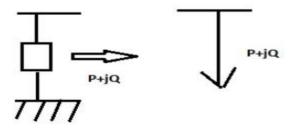
Z'=Z sinh γ L / γ L

$$Y'/2 = 1/Zc \tan h (\gamma L/2)$$

$$\begin{pmatrix} Vs \\ Is \end{pmatrix} = \begin{pmatrix} \cosh \gamma & Zc \sinh \gamma \\ 1/Zc \sinh \gamma & \cosh \gamma \end{pmatrix} \begin{pmatrix} Vr \\ Ir \end{pmatrix}$$

Shunt Elements:

The shunt capacitor is connected to bus i. If S is MVAR rating of shunt capacitor. So is base MVA admittance P.u. Y P.u. = 0+jS/S0


Shunt reactors is connected to bus i. If S is MVAR rating of shunt capacitor. So is base MVA admittance P.u. Y P.u. = 0-jS/S0

Load representation

Load:

Load is represented by a constant power representation. Both MW (P) & MVAR (Q) – constant

