

4.3.1 Interface a Raspberry Pi with an Arduino

Interface a Raspberry Pi with an Arduino so the two boards can communicate with one another.

Sometimes you may need to connect an Arduino to a Raspberry Pi. For example, if you have sensors,

motors, and actuators, you can connect these to the Arduino and make the Arduino send values to and

from the Raspberry Pi. This way, we can separate the computing intensive tasks (done by the Raspberry

Pi) and controlling tasks (done by the Arduino).

we will connect an Arduino to a Raspberry Pi and have the Arduino send “Hello from Arduino” to the

Raspberry Pi, and the Raspberry Pi will blink an LED upon receiving the command from the Arduino.

For communication, we will use simple serial communication over USB cable. So, let’s get started!

Connect the LED to pin number 11 as shown in the picture below.

Turn on the Raspberry Pi and open Python 3 in a new window.

Write the following code in the new window and save it. (Save to your desktop so you don't lose it.)

import serial

import RPi.GPIO as GPIO import time

ser=serial.Serial("/dev/ttyACM0",9600) #change ACM number as found from ls /dev/tty/ACM*

ser.baudrate=9600

def blink(pin):

GPIO.output(pin,GPIO.HIGH) time.sleep(1)

GPIO.output(pin,GPIO.LOW) time.sleep(1)

return

GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT)

while True:

read_ser=ser.readline() print(read_ser)

if(read_ser=="Hello From Arduino!"):

blink(11)

Now open Arduino IDE and upload the following code to your Arduino. String data="Hello From

Arduino!";

void setup()

{

// put your setup code here, to run once: Serial.begin(9600);

}

void loop()

{

// put your main code here, to run repeatedly: Serial.println(data);//data that is being Sent delay(200);

}

Make sure the code is uploaded to Arduino.

In your Raspberry Pi interface, be sure to enable Serial and I2C in PiConfig.

Next, you'll need to restart your Raspberry Pi. Open the Terminal and execute these commands:

 sudo apt-get install python-serial

sudo pip install pyserial

Connect your Arduino to your Raspberry Pi. Execute.

ls /dev/tty*

Then find a line with /dev/ttyACM0 or something like /dev/ttyACM1 etc. (check for an ACM with

any number 0,1,2 etc.)

Open Python again and change ser=serial.Serial(“dev/ttyACM1”,9600) to the ACM number you

found. So, if in your case you got ACM0, the line should look like this:

ser=serial.Serial(“dev/ttyACM0”,9600). Now run the program you just created in Python3. You will

see “Hello From Arduino!” in the Python terminal, and your LED should be blinking as well!

4.3.2 Raspberry Pi GPIO Access

GPIO (General Purpose Input Output) pins can be used as input or output and allows raspberry pi to

connect with general purpose I/O devices.

 Raspberry pi 3 model B took out 26 GPIO pins on board.

 Raspberry pi can control many external I/O devices using these GPIO’s.

 These pins are a physical interface between the Pi and the outside world.

 We can program these pins according to our needs to interact with external devices. For

example, if we want to read the state of a physical switch, we can configure any of the

available GPIO pins as input and read the switch status to make decisions. We can also

configure any GPIO pin as an output to control LED ON/OFF.

 Raspberry Pi can connect to the Internet using on-board Wi-Fi or Wi-Fi USB adapter. Once

the Raspberry Pi is connected to the Internet then we can control devices, which are

connected to the Raspberry Pi, remotely.

GPIO Pins of Raspberry Pi 3 are shown in below figure:

Raspberry Pi 3 Model B GPIO Pin Mapping

Some of the GPIO pins are multiplexed like I2C, SPI, UART etc. We can use any of the GPIO pins for

our application.

Pin Numbering

We should define GPIO pin which we want to use as an output or input. But Raspberry Pi has two ways

of defining pin number which are as follows:

• GPIO Numbering

• Physical Numbering

In GPIO Numbering, pin number refers to number on Broadcom SoC (System on Chip). So, we should

always consider the pin mapping for using GPIO pin.

While in Physical Numbering, pin number refers to the pin of 40-pin P1 header on Raspberry Pi Board.

The above physical numbering is simple as we can count pin number on P1 header and assign it as

GPIO.

But, still we should consider the pin configuration diagram shown above to know which are GPIO pins

and which are VCC and GND.

Control LED with Push Button using Raspberry Pi

Control LED using Raspberry Pi Interfacing Diagram

Example

Now, let’s control LED using a switch connected to the Raspberry Pi. Here, we are using Python and C

(WiringPi) for LED ON-OFF control.

Control LED using Python

Now, let’s turn an ON and OFF LED using Python on Raspberry Pi. The switch is used to control the

LED ON-OFF.

Python Program for Raspberry Pi to control LED using Push Button

import RPi.GPIO as GPIO #import RPi.GPIO module

LED = 32 #pin no. as per BOARD, GPIO18 as per BCM Switch_input = 29

 #pin no. as per BOARD, GPIO27 as per BCM

GPIO.setwarnings(False) #disable warnings GPIO.setmode(GPIO.BOARD) #set pin

numbering format GPIO.setup(LED, GPIO.OUT) #set GPIO as output GPIO.setup(Switch_input,

GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True: if(GPIO.input(Switch_input)):

GPIO.output(LED,GPIO.LOW)

else:

GPIO.output(LED,GPIO.HIGH)

Functions Used:

RPi.GPIO

To use Raspberry Pi GPIO pins in Python, we need to import RPi.GPIO package which has class to

control GPIO. This RPi.GPIO Python package is already installed on Raspbian OS. So, we don’t need

to install it externally. Just, we should include library in our program to use functions for GPIO access

using Python. This is given as follows.

import RPi.GPIO as GPIO

GPIO.setmode (Pin Numbering System)

This function is used to define Pin numbering system i.e. GPIO numbering or Physical numbering.

Pin Numbering System = BOARD/BCM

E.g. If we use pin number 40 of P1 header as a GPIO pin which we have to configure as output then,

In BCM,

GPIO.setmode(GPIO.BCM) GPIO.setup(21, GPIO.OUT)

In BOARD,

GPIO.setmode(GPIO.BOARD) GPIO.setup(40, GPIO.OUT)

GPIO.setup (channel, direction, initial value, pull up/pull down)

This function is used to set the direction of GPIO pin as an input/output. channel – GPIO pin number

as per numbering system. direction – set direction of GPIO pin as either Input or Output.

initial value – can provide initial value

pull up/pull down – enable pull up or pull down if required Few examples are given as follows,

• GPIO as Output

GPIO.setup(channel, GPIO.OUT)

• GPIO as Input

GPIO.setup(channel, GPIO.IN)

• GPIO as Output with initial value

GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

• GPIO as Input with Pull up resistor

GPIO.setup(channel, GPIO.IN, pull_up_down = GPIO.PUD_UP) GPIO.output(channel,

state)

This function is used to set the output state of GPIO pin.

channel – GPIO pin number as per numbering system.

state – Output state i.e. HIGH or LOW of GPIO pin

e.g.

GPIO.output(7, GPIO.HIGH)

GPIO.input(channel)

This function is used to read the value of GPIO pin. e.g.

GPIO.input(9)

Control LED using C (WiringPi)

We can access Raspberry Pi GPIO using C. Here, we are using WiringPi library for accessing Raspberry

Pi GPIO using C.

Before implementing LED blinking using wiringPi, you can refer How to use WiringPi library.

C (WiringPi) Program for Raspberry Pi to control LED using Push Button

#include <wiringPi.h>

#include <stdio.h>

int LED = 26; /* GPIO26 as per wiringPi, GPIO12 as per BCM, pin no.32 */

int switch_input = 21; /* GPIO21 as per WiringPi, GPIO5 as per BCM, pin no.29 */ int main(){

wiringPiSetup(); /* initialize wiringPi setup */ pinMode(LED,OUTPUT); /* set GPIO

as output */ pullUpDnControl(switch_input, PUD_UP);

while (1){

if(digitalRead(switch_input))

digitalWrite(LED,LOW); /* write LOW on GPIO */else

}

}

digitalWrite(LED, HIGH); /* write HIGH on GPIO */

