
Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

PROTOCOLS AND TECHNOLOGIES BEHIND IOT

IOT Protocols

Data flowing from or to “things” is consumed, controlled, or monitored by data center

servers either in the cloud or in locations that may be distributed or centralized.

Dedicated applications are then run over virtualized or traditional operating systems

or on network edge platforms (for example, fog computing). These lightweight

applications communicate with the data center servers. Therefore, the system

solutions combining various physical and data link layers call for an architectural

approach with a common layer(s) independent from the lower (connectivity) and/or

upper (application) layers.

IPv6:

IPv6 Adaptation Layer: IPv6-only adaptation layers for some physical

and data link layers for recently standardized IoT protocols support

only IPv6. While the most common physical and data link layers

(Ethernet, Wi-Fi, and so on) stipulate adaptation layers for both

versions, newer technologies, such as IEEE 802.15.4 (Wireless

Personal Area Network), IEEE 1901.2, and ITU G.9903

(Narrowband Power Line Communications) only have an IPv6 adaptation

layer specified. This means that any device implementing a

technology that requires an IPv6 adaptation layer must

communicate over an IPv6-only subnetwork. This is reinforced by the

IETF routing protocol for LLNs, RPL, which is IPv6 only.

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

6LoWPAN

Comparison of an IoT Protocol Stack Utilizing 6LoWPAN and an IP Protocol Stack

6LoWPAN Header Stacks

Header Compression

IPv6 header compression for 6LoWPAN was defined initially in RFC 4944 and

subsequently updated by RFC 6282. This capability shrinks the size of IPv6’s 40-byte

headers and User Datagram Protocol’s (UDP’s) 8-byte headers down as low as 6 bytes

combined in some cases.

Note that header compression for 6LoWPAN is only defined for an IPv6 header and not

IPv4.The 6LoWPAN protocol does not support IPv4, and, in fact, there is no standardized

IPv4 adaptation layer for IEEE 802.15.4.

6LoWPAN header compression is stateless, and conceptually it is not too complicated.

However, a number offactors affect the amount of compression, such as implementation of

RFC 4944 versus RFC 6922, whether UDP is included, and various IPv6 addressing

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

scenarios. It is beyond the scope of this book to cover every use case and how the

header fields change for each. However, this chapter provides an example that shows the

impact of 6LoWPAN header compression.

Fragmentation

The maximum transmission unit (MTU) for an IPv6 network must be at least 1280 bytes. The

term MTU defines the size of the largest protocol data unit that can be passed. For IEEE

802.15.4, 127 bytes is the MTU. You can see that this is a problem because IPv6, with a

much larger MTU, is carried inside the 802.15.4 frame with a much smaller one. To

remedythis situation, large IPv6 packets must be fragmented across multiple 802.15.4 frames

at Layer2.

The fragment header utilized by 6LoWPAN is composed of three primary fields: Datagram

Size, Datagram Tag, and Datagram Offset. The 1-byte Datagram Size field specifies the total

size of the unfragmented payload. Datagram Tag identifies the set of fragments for a payload.

Finally, the Datagram Offset field delineates how far into a payload a particular fragment

occurs.

Mesh Addressing

The purpose of the 6LoWPAN mesh addressing function is to forward packets over multiple

hops. Three fields are definedfor this header: Hop Limit, Source Address, and Destination

Address. Analogous to the IPv6 hop limit field, the hop limit for mesh addressing also

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

provides an upper limit on how many times the frame can be forwarded. Each hop decrements

this value by 1 as it is forwarded. Once the value hits 0, it is dropped and no longer forwarded.

