

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MATHEMATICS

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

1.1 FORMATION OF PDE BY ELIMINATING ARBITRARY CONSTANTS & FUNCTIONS

Notations: If z = f(x, y) then

$$p = \frac{\partial z}{\partial x}$$
; $q = \frac{\partial z}{\partial y}$; $r = \frac{\partial^2 z}{\partial x^2}$; $s = \frac{\partial^2 z}{\partial x \partial y}$; $t = \frac{\partial^2 z}{\partial y^2}$

Formation of PDE by eliminating arbitrary constants:

Let the given equation be z = f(x, y, a, b) ----(1)

Step 1: Differentiating (1) partially with respect to x

$$\frac{\partial z}{\partial x} = p = f'(x, y, a, b) \quad ----- (2)$$

Step 2: Differentiating (1) partially with respect to y

$$\frac{\partial z}{\partial y} = q = f'(x, y, a, b) \quad ---- (3)$$

Step 3: Eliminate a & b from (1) using (2) & (3)

1. Obtain partial differential equation by eliminating arbitrary constant 'a' and 'b' from $z = (x-a)^2 + (y-b)^2$

Solution:

Given
$$z = (x-a)^2 + (y-b)^2 ----(1)$$

Diff Partially w.r.t x

$$\frac{\partial z}{\partial x} = 2(x - a) + 0$$

$$p = 2(x-a)$$
 ----(2)

Diff Partially w.r.t y

$$\frac{\partial z}{\partial y} = 0 + 2(y - b)$$

$$q = 2(y-b)$$
 ----(3)

Eliminate a & b from (1) using (2) & (3)

$$(2) \Rightarrow (x-a) = \frac{p}{2} \quad ----(4)$$

$$(3) \Rightarrow y - b = \frac{q}{2} \quad ----(5)$$

Sub (4) & (5) in (1)

$$(1) \Rightarrow z = \left(\frac{p}{2}\right)^2 + \left(\frac{q}{2}\right)^2$$

The required the PDE is

$$p^2 + q^2 = 4z$$

2. Form the partial differential equation by eliminating the arbitrary constants 'a' & 'b' from $z = (x^2 + a)(y^2 + b)$.

Solution:

Given
$$z = (x^2 + a)(y^2 + b) - - - - (1)$$

Diff Partially w.r.t x

$$\frac{\partial z}{\partial x} = p = 2x(y^2 + b) - - - - (2)$$

Diff Partially w.r.t y

$$\frac{\partial z}{\partial y} = q = 2y(x^2 + a) - - - (3)$$

Eliminate a & b from (1) using (2) & (3)

$$(2) \Rightarrow (y^2 + b) = \frac{p}{2x} - - - - (4)$$

$$(3) \Rightarrow x^2 + b = \frac{q}{2y} - - - - (5)$$

Sub (4) & (5) in (1)

$$(1) \Rightarrow z = \left(\frac{p}{2x}\right) \left(\frac{q}{2y}\right)$$

The required the PDE is

$$4xyz = pq$$

3. Find the PDE of all planes having equal intercepts on the x and y axis.

Solution:

The intercept form of the plane equation is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Given that equal intercepts on the x & y axis $\Rightarrow a = b$

$$\therefore \frac{x}{a} + \frac{y}{a} + \frac{z}{c} = 1 - - - - (1)$$

Diff Partially w.r.t x

$$\frac{1}{a} + 0 + \frac{1}{c} \frac{\partial z}{\partial x} = 0 \implies \frac{1}{a} = \frac{-1}{c} p \quad ----(2)$$

Diff Partially w.r.t y

$$0 + \frac{1}{a}(1) + \frac{1}{c}\frac{\partial z}{\partial y} = 0 \implies \frac{1}{a} = \frac{-1}{c}q \quad ----(3)$$

From (2) & (3) $\frac{-1}{c}p = \frac{-1}{c}q$ The required the PDE is p = q

4. Obtain the partial differential equation by eliminating arbitrary constants 'a' and 'b' from $(x-a)^2 + (y-b)^2 + z^2 = r^2$

Solution:

$$(x-a)^2 + (y-b)^2 + z^2 = 1 - - - - (1) - (1)$$

Diff Partially w.r.t x

$$2(x-a)(1-0) + 0 + 2z\frac{\partial z}{\partial x} = 0$$

$$\Rightarrow$$
 2(x-a)+2zp=0 ---- (2)

Diff Partially w.r.t y

$$0 + 2(y - b)(1 - 0) + 2z \frac{\partial z}{\partial y} = 0$$

$$\Rightarrow 2(y-b)+2zq=0$$
 ----(3)

Eliminate a & b from (1) using (2) & (3)

$$(2) \Rightarrow x - a = -zp ---- (4)$$

$$(3) \Rightarrow y - b = -zq - - - - (5)$$

Sub (4) & (5) in (1)

$$(-zp)^2 + (-zq)^2 + z^2 = 1$$

The required PDE is $z^2(p^2+q^2+1)=1$

Formation of PDE by eliminating arbitrary functions:

Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form the PDE.

Solution:

1.

$$z = f\left(\frac{y}{x}\right) - - - - (1)$$

Diff Partially w.r.t x

$$\frac{\partial z}{\partial x} = p = f'\left(\frac{y}{x}\right) \times \left(\frac{-y}{x^2}\right) \implies f'\left(\frac{y}{x}\right) = \frac{-px^2}{y} - - - -(2)$$

Diff Partially w.r.t x

$$\frac{\partial z}{\partial y} = q = f'\left(\frac{y}{x}\right) \times \left(\frac{1}{x}\right) - - - -(3)$$

From (1) & (2)
$$\frac{p}{q} = \frac{-y}{x} \Rightarrow px + qy = 0$$

2.

Form the partial differential equation by eliminating f from $z = x^2 + 2f\left(\frac{1}{y} + \log x\right)$.

Solution:

Given
$$z = x^2 + 2f\left(\frac{1}{y} + \log x\right) - - - - (1)$$

Differentiate (1) partially w.r. t x

$$\frac{\partial z}{\partial x} = 2x + 2f'\left(\frac{1}{y} + \log x\right)\left(0 + \frac{1}{x}\right)$$

$$p = 2x + 2f'\left(\frac{1}{y} + \log x\right)\left(\frac{1}{x}\right) \Rightarrow f'\left(\frac{1}{y} + \log x\right) = (p - 2x)\frac{x}{2} - - - - (2)$$

$$\frac{\partial z}{\partial y} = 2f' \left(\frac{1}{y} + \log x \right) \left(\frac{-1}{y^2} + 0 \right)$$

$$q = \frac{-2}{y^2} f'\left(\frac{1}{y} + \log x\right) \implies f'\left(\frac{1}{y} + \log x\right) = \frac{-qy^2}{2} - - - - (3)$$

Eliminating f' from (2) & (3)

$$(p-2x)\frac{x}{2} = \frac{-qy^2}{2} \implies (px-2x^2) = -qy^2$$

$$\Rightarrow px + qy^2 = 2x^2$$

Formation of PDE by eliminating f from f(u, v) = 0 -----(1)

Method 1:

The required PDE of (1) is
$$\begin{vmatrix} p & q & -1 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = 0$$

Method 2:

The required PDE is Pp + Qq = R

Where

$$P = \begin{vmatrix} u_y & v_y \\ u_z & v_z \end{vmatrix} \; ; \; Q = \begin{vmatrix} u_z & v_z \\ u_x & v_x \end{vmatrix} \; ; R = \begin{vmatrix} u_x & v_x \\ u_y & v_y \end{vmatrix}$$

1. **Form the PDE from** $\phi(ax+by+cz, x^2+y^2+z^2)=0$

Solution:

Given
$$\phi(ax + by + cz, x^2 + y^2 + z^2) = 0$$

This is of the form f(u, v) = 0 where u = ax + by + cz & $v = x^2 + y^2 + z^2$

The required PDE of (1) is $\begin{vmatrix} p & q & -1 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = 0$

$$\begin{vmatrix} p & q & -1 \\ a & b & c \\ 2x & 2y & 2z \end{vmatrix} = 0$$

$$\Rightarrow p(2bz-2cy)-q(2az-2cx)+1(2az-2cx)=0$$

$$\div 2 \Rightarrow \boxed{(bz - cy)p + (cx - az)q + (az - cx) = 0}$$

2. **Form the PDE from** $\phi(x^2 + y^2 + z^2, xyz) = 0$

Solution:

Given
$$\phi(x^2 + y^2 + z^2, xyz) = 0$$

This is of the form f(u, v) = 0 where $u = x^2 + y^2 + z^2$ & v = xyz

The required PDE of (1) is $\begin{vmatrix} p & q & -1 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = 0$

$$\begin{vmatrix} p & q & -1 \\ 2x & 2y & 2z \\ yz & xz & xy \end{vmatrix} = 0$$

$$\Rightarrow p(2xy^2 - 2xz^2) - q(2x^2y - 2yz^2) + 1(2x^2z - 2y^2z) = 0$$

$$\div 2 \Rightarrow x(y^2 - z^2)p + y(z^2 - x^2) + z(x^2 - y^2) = 0$$

3. **Form the PDE from** $\phi \left(\frac{y}{x}, x^2 + y^2 + z^2 \right) = 0$

Solution:

Given
$$\phi\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0$$

This is of the form f(u, v) = 0 where $u = \frac{y}{x} & v = x^2 + y^2 + z^2$

The required PDE of (1) is $\begin{vmatrix} p & q & -1 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = 0$

$$\begin{vmatrix} p & q & -1 \\ \frac{-y}{x^2} & \frac{1}{x} & 0 \\ 2x & 2y & 2z \end{vmatrix} = 0$$

$$\Rightarrow p\left(\frac{2z}{x} - 0\right) - q\left(\frac{-2yz}{x^2} - 0\right) + 1\left(\frac{-2y^2}{x^2} - \frac{2x}{x}\right) = 0$$

$$\Rightarrow \frac{2zp}{x} + \frac{2yzq}{x^2} - 2\left(\frac{y^2}{x^2} + 1\right) = 0$$

$$\div 2 \Rightarrow \frac{zp}{x} + \frac{yzq}{x^2} - \left(\frac{y^2 + x^2}{x^2}\right) = 0$$

$$\Rightarrow \frac{xzp + yzq - (y^2 + x^2)}{x^2} = 0$$

$$xzp + yzq - (y^2 + x^2) = 0$$